Abstract:
Provided are a microfluidic device including an electrolysis device for cell lysis which includes an anode chamber, a cathode chamber and a separator, in which the separator is installed between the anode chamber and the cathode chamber, the anode chamber includes an inlet and an outlet for an anode chamber solution and an electrode, and the cathode chamber includes an inlet and an outlet for a cathode chamber solution and an electrode, and a method of electrochemically lysing cells using the same.
Abstract:
Provided is a method of purifying nucleic acid, the method including: contacting a nucleic acid-containing sample and a solution containing a kosmotropic salt on a solid support having a hydrophilic functional group on its surface to bind the nucleic acid to the solid support. Since the solid support is used as it is without any surface treatment, manufacture of the apparatus is very easy, and nucleic acid can be bound to the solid support without specific additives in a wide pH range, so that the apparatus can be used for a Lab-On-a-Chip.
Abstract:
Provided is a pH dependent ion exchange material. The pH dependent ion exchange material has at least one monomer selected from the group consisting of M0, M1, M2 and M3 represented by the following formulae, provided that at least one monomer having A and at least one monomer having B are contained therein, the pH dependent ion exchange material having a degree of polymerization of 2-30,000. wherein A is a group —X(CH2)nY, wherein n is an integer from 1 to 10, X is a functional group which can react with an activated ester, and Y is a primary, secondary, tertiary amine or a nitrogen-containing aromatic heterocyclic base, B is a group —X′(CH2)nY′, wherein n is an integer from 1 to 10, X′ is a functional group which can react with an activated ester, and Y′ is an acid generating group having a pKa value of 4 or less, and R3 is an alkyl group having 1 to 10 carbon atoms.
Abstract:
Provided is a microarray holding device. The microarray holding device includes: a solid substrate in the form of a plate in which an engaging-receiving portion for receiving a microarray substrate to be engaged therewith is formed, the engaging-receiving portion being composed of an opening; sidewalls to be aligned with sidewalls of the microarray substrate to be engaged with the engaging-receiving portion; and a base surface on which a top or bottom surface of the microarray substrate to be engaged with the engaging-receiving portion is to be placed, wherein the base surface is depressed from a top or bottom surface of the solid substrate such that the other surface of the microarray substrate is lower than the top or bottom surface of the solid substrate when the microarray substrate is engaged with the engaging-receiving portion.
Abstract:
Provided herein is a method and apparatus for disrupting cells and purifying nucleic acids in a single chip. The method comprises irradiating a chip with a laser beam, wherein the chip comprises a solid support on which a cell lysis enhancing metal oxide layer, and a cell binding metal oxide layer have been deposited.
Abstract:
A method of sequentially performing concentration and amplification of nucleic acid in a single micro chamber includes: introducing a nucleic acid-containing sample and a solution including a kosmotropic salt to a micro chamber having a hydrophilic interior surface to concentrate the nucleic acid by binding the nucleic acid on the interior surface of the micro chamber; and performing a polymerase chain reaction (PCR) by adding a PCR mixture to the chamber. Since the nucleic acid is reversibly bound to the interior surface of the micro chamber, PCR yield is higher compared with a surface of aluminum oxide in which irreversible binding occurs. In addition, all processes are sequentially performed in a single micro chamber so that the number of samples, consumables, time, and labor for treatment and analysis can be reduced, detection sensitivity can be improved, and risk of sample cross contamination significantly reduced without sample loss by eliminating transporting of the sample. A complete automated system for concentration and amplification of nucleic acid is thus readily provided.
Abstract:
Provided is a method of isolating nucleic acid from cells using a single surface, wherein a compound represented by Formula 1 is bound to the surface. Also provided are an apparatus for isolation of nucleic acids, and a bead for isolating nucleic acids.
Abstract:
Provided is a method of isolating nucleic acid from cells using a single surface, wherein a compound represented by Formula 1 is bound to the surface. Also provided are an apparatus for isolation of nucleic acids, and a bead for isolating nucleic acids.
Abstract:
Provided is a lysis method for cells or viruses, including: immobilizing a metal-ligand complex on a solid support; and mixing the complex immobilized on the support with a cell or virus solution. According to the lysis method, by immobilizing a chemical on a solid support to perform cell lysis, the dilution problem according to the addition of a cell lysis solution can be resolved and a separate process of removing the chemical is not required so as to reduce the steps upon LOC implementation. In addition, since a variety of solid supports, such as chips, beads, nanoparticles etc. can be used, cell lysis apparatuses of various forms can be fabricated.
Abstract:
Provided is a Field-Effect Transistor (FET)-based biosensor including: a substrate; a source and a drain, disposed on the substrate, having opposite polarity to the substrate; a gate, disposed on the substrate, contacting the source and the drain; and an inorganic film capable of binding with a biomolecule, disposed on a surface of the gate. A method of manufacturing the FET-based biosensor and a method of detecting a biomolecule using the FET-based biosensor is also provided. The FET-based biosensor can be manufactured using a semiconductor fabrication process without performing an additional process. Therefore, the inorganic film can be selectively deposited on a surface of a specific gate of a single FET, or on the surfaces of some gates of a plurality of FETs using patterning. Furthermore, the FET-based biosensor can be used to effectively detect trace amounts of a target biomolecule in a sample.