Abstract:
Electronic devices may be provided that include mechanical and electronic components. Connectors may be used to interconnect printed circuits and devices mounted to printed circuits. Printed circuits may include rigid printed circuit boards and flexible printed circuit boards. Cosmetic structures such as cowlings may be used to improve device aesthetics. Bumpers may be mounted over rough edges of printed circuit boards to protect flex circuits that are routed over the printed circuit boards. Fasteners may be soldered to solder pad structures on printed circuit boards.
Abstract:
Methods and structures for forming anodization layers that protect and cosmetically enhance metal surfaces are described. In some embodiments, methods involve forming an anodization layer on an underlying metal that permits an underlying metal surface to be viewable. In some embodiments, methods involve forming a first anodization layer and an adjacent second anodization layer on an angled surface, the interface between the two anodization layers being regular and uniform. Described are photomasking techniques and tools for providing sharply defined corners on anodized and texturized patterns on metal surfaces. Also described are techniques and tools for providing anodizing resistant components in the manufacture of electronic devices.
Abstract:
An electronic device may include a camera module. Control circuitry within the electronic device may use an image sensor within the camera module to acquire digital images. The camera module may have lens structures that are supported by lens support structures such as a lens barrel and lens carrier. An actuator such as a voice coil motor may control the position of the lens support structures relative to internal support structures such as upper and lower spacer members. Springs may be used to couple the lens support structures to the internal support structures. Outer wall structures in the camera module such as a ferromagnetic shield structures may surround and enclose at least some of the internal support structures. The outer wall structures may have openings. The internal support structures may have pins or other alignment structures that protrude through the openings.
Abstract:
An electronic device may include subassemblies such as battery structures, electromagnetic shielding structures, and button structures. The electromagnetic shielding structures may include a conductive fence and a flexible shielding layer that covers electronic components. The electromagnetic shielding structure may be formed with a recess that receives a protruding portion of a battery. The recess may be formed from a multi-level shielding structure that includes rigid and flexible portions. The button structures may be mounted to a ledge that is formed as an integral part of a device housing. An electronic device battery may be enclosed in a protective battery sleeve. The battery sleeve may include a center portion that encloses the battery and peripheral portions that are folded and coupled to the center portion by adhesive material interposed between opposing surfaces of the folded peripheral portions and the center portion of the battery sleeve.
Abstract:
Various components of an electronic device housing and methods for their assembly are disclosed. The housing can be formed by assembling and connecting two or more different sections together. The sections of the housing may be coupled together using one or more coupling members. The coupling members may be formed using a two-shot molding process in which the first shot forms a structural portion of the coupling members, and the second shot forms cosmetic portions of the coupling members.
Abstract:
An electronic device may have a display. The display may have active components such as display pixels formed on a display substrate layer. The display substrate layer may be formed from a glass substrate layer. Thin-film transistors and other components for the display pixels may be formed on the glass substrate. An encapsulation glass layer may be bonded to the glass substrate using a ring-shaped bond structure. The ring-shaped bond structure may extend around the periphery of the encapsulation glass layer and the substrate glass layer. The bond structure may be formed from a glass frit, a solid glass ring, integral raised glass portions of the glass layers, meltable metal alloys, or other bond materials. Chemical and physical processing operations may be used to temper the glass layers, to perform annealing operations, to preheat the glass layers, and to promote adhesion.
Abstract:
An electronic device may have a housing. A camera window assembly may be mounted in a hole within the housing. The housing may be formed from a structure such as a planar glass member. The hole in which the camera window assembly is formed may be circular. A mating circular trim member in the camera window assembly may be mounted in the hole. A flange structure on the trim member may help retain the trim member within the housing. A shelf portion of the trim member may receive a ring of adhesive. The camera window assembly may have a clear disk-shaped lens with planar opposing front and rear surfaces that is mounted on the shelf portion using the adhesive. An elastomeric ring may be compressed between sidewall portions of the trim member and the lens to help retain the lens within the camera window assembly.
Abstract:
A coated chassis is disclosed. The chassis can be made from a non-conductive material and can be operable to support a display. A conductive material can be applied to at least a portion of the chassis to form a continuous strip on the chassis frame. The conductive material can further form a closed-loop around the chassis frame. The chassis frame can be included within a device, such as a mobile phone, touchpad, portable computer, portable media player, and the like. The conductive material on the chassis can be coupled to the system ground of the device. Processes for making a coated chassis are also disclosed.
Abstract:
Electronic devices and other apparatuses adapted to receive electromagnetic wave communications are disclosed. An outer housing encloses various device components, including at least an internal antenna located fully therewithin and adapted to receive/send communications from/to an outside source via RF or other electromagnetic waves. A ceramic coating can be a thermal spray coating that covers at least a portion of the outer surface proximate to the internal antenna, and can be “RF transparent”—adapted to allow communications to/from the internal antenna via electromagnetic waves. The outer housing can be plastic, metal or a combination thereof. For metal or other non-RF transparent housings, an RF-transparent insert can be fitted into a window in the housing to permit communications to the internal antenna. The ceramic coating covers some or all of the metal, plastic and/or insert that comprise the outer housing and surface for a final aesthetic finish to the device.
Abstract:
Multiple electronic devices may be used together in a system. The electronic devices may use sensor measurements and other information to detect when an edge of a first electronic device is adjacent to an edge of a second electronic device. In response to detection of adjacency between the edges of the first and second devices, the devices may transition from an independent operating mode in which each device operates separately to a joint operating mode in which resources of the devices are shared. In the joint operating mode, images may extend across displays in the devices, speakers in the devices may be used to play different channels of an audio track, cameras and other sensors may be used in cooperation with each other, and other resources may be shared. Magnetic components may hold devices together in a variety of orientations.