Abstract:
A method for reducing stress between a conductive layer and a mask layer is provided. The method for reducing stress comprises a step of performing a plasma treatment with a nitrogen-containing gas to modify a surface of the conductive layer prior to the formation of the mask layer upon the surface. The method is useful for the manufacture of a gate, and the method for manufacturing the gate comprises the steps of providing a substrate; and sequentially depositing an oxide layer, a conductive layer, and a mask layer on the substrate to form a gate stack structure. The conductive layer is subjected to a surface plasma treatment with a nitrogen-containing gas prior to depositing the mask layer to modify its surface.
Abstract:
A vertical-type surrounding gate semiconductor device is described. The semiconductor device comprises a pillar substrate, a collar oxide layer, a metal layer, a drain region, a ground line, a source region, a bit line, a word line, a gate and a gate dielectric layer. The ground line is formed in an opening of the pillar substrate and electrically connected to the pillar substrate, and covers the collar oxide layer and the metal layer. The drain region is formed on the top of the pillar substrate and in the upper portion of the opening. The gate is formed among the word line, the bit line and the pillar substrate. The gate dielectric layer is formed among the gate, the source region, the drain region, the bit line and the pillar substrate.
Abstract:
The present invention discloses a stacked capacitor having interdigital electrodes and method for preparing the same. The stacked capacitor comprises a first interdigital electrode, a second interdigital electrode and a dielectric material sandwiched between the first interdigital electrode and the second interdigital electrode. The first and the second interdigital electrodes comprise a body and a plurality of fingers electrically connected to the body, and the dielectric material can be silicon nitride or silicon oxide. Preferably, fingers of the first interdigital electrode are made of titanium nitride, while fingers of the second interdigital electrode are made of polysilicon. The body of the first and the second interdigital electrodes are preferably made of titanium nitride.
Abstract:
A method of fabricating a dynamic random access memory cell is provided. A substrate having a patterned mask layer thereon and a deep trench therein is provided. The patterned mask layer exposes the deep trench. A deep trench capacitor is formed inside the deep trench. Thereafter, a trench is formed in the substrate on one side of the deep trench capacitor. The trench exposes a portion of the upper electrode of the deep trench capacitor and a portion of the substrate. After that, a semiconductor strip is formed in the trench. A gate dielectric layer is formed over the substrate to cover the exposed semiconductor strip and the substrate. A gate is formed over the gate dielectric layer such that the gate and the semiconductor strip crosses over each other, and the gate-covered portion of the semiconductor strip serves as a channel region.
Abstract:
A method of making planar-type bottom electrode for semiconductor device is disclosed. A sacrificial layer structure is formed on a substrate. Multiple first trenches are defined in the sacrificial layer structure, wherein those first trenches are arranged in a first direction. The first trenches are filled with insulating material to form an insulating layer in each first trench. Multiple second trenches are defined in the sacrificial layer structure between the insulating layers, and are arranged in a second direction such that the second trenches intersect the first trenches. The second trenches are filled with bottom electrode material to form a bottom electrode layer in each second trench. The insulating layers separate respectively the bottom electrode layers apart from each other. Lastly, removing the sacrificial layer structure defines a receiving space by two adjacent insulating layers and two adjacent bottom electrode layers.
Abstract:
An atomic layer deposition apparatus comprises a reaction chamber, a heater configured to heat a semiconductor wafer positioned on the heater, an oxidant supply configured to deliver oxidant-containing precursors having different oxidant concentrations to the reaction chamber, and a metal supply configured to deliver a metal-containing precursor to the reaction chamber. The present application also discloses a method for preparing a dielectric structure comprising the steps of placing a substrate in a reaction chamber, performing a first atomic layer deposition process including feeding an oxidant-containing precursor having a relatively lower oxidant concentration and a metal-containing precursor to form an thinner interfacial layer on the substrate, and performing a second atomic layer deposition process including feeding the oxidant-containing precursor having an oxidant concentration higher than that used to grow the first metal oxide layer and the metal-containing precursor into the reaction chamber.
Abstract:
A method for forming a trench isolation structure and a semiconductor device are provided. The method comprises the following steps: forming a patterned mask on a semiconductor substrate; defining a trench with a predetermined depth D by using the patterned mask, wherein the trench has a bottom and a side wall; forming a liner layer covering the bottom and the side wall of the trench; substantially filling the trench with a flowable oxide from the bottom to a thickness d1 to form an oxide layer; forming a barrier layer with a thickness d′ to cover and completely seal the surface of the oxide layer, wherein d′
Abstract:
An integrated circuit device comprises a substrate, a stack structure including circuit structure having conductive lines positioned on the substrate, a reinforcement structure including at least one supporting member positioned on the substrate and a roof covering the circuit structure and the supporting member and at least one bonding pad positioned on the roof and electrically connected to the conductive lines. A method for preparing an integrated circuit device comprises forming a stack structure including circuit structure having conductive lines on a substrate, forming a reinforcement structure including at least one supporting member on the substrate and a roof covering the supporting member and the circuit structure and forming at least one bonding pad on the roof and electrically connecting to the conductive lines.
Abstract:
An apparatus for the rapid thermal processing of a semiconductor wafer is disclosed. The apparatus includes a preheat unit for preheating a gas composition, and a RTP reactor having a processing chamber and a heat source for heating the wafer. The processing chamber has a wafer holder, and a gas inlet and a gas outlet through which the preheated gas composition flows in and out of the processing chamber.