Abstract:
A three-dimensional graphene structure, and methods of manufacturing and transferring the same including forming at least one layer of graphene having a periodically repeated three-dimensional shape. The three-dimensional graphene structure is formed by forming a pattern having a three-dimensional shape on a surface of a substrate, and forming the three-dimensional graphene structure having the three-dimensional shape of the pattern by growing graphene on the substrate on which the pattern is formed. The three-dimensional graphene structure is transferred by injecting a gas between the three-dimensional graphene structure and the substrate, separating the three-dimensional graphene structure from the substrate by bonding the three-dimensional graphene structure to an adhesive support, combining the three-dimensional graphene structure with an insulating substrate, and removing the adhesive support.
Abstract:
Disclosed herein is a protective film. The protective film is produced by alternate coating of a polysilazane-based polymer and a flexible polysiloxane-based polymer. The polysilazane-based polymer is cured at low temperature to form silica, thereby achieving high hardness and high light transmittance. The protective film has improved interfacial adhesion between the respective coating films, which prevents permeation of moisture and oxygen. In addition, the protective film can be easily produced by low-temperature wet processes. Also disclosed herein is an encapsulation material comprising the protective film.
Abstract:
Provided are a method of forming nano dots, method of fabricating a memory device including the same, charge trap layer including the nano dots and memory device including the same. The method of forming the nano dots may include forming cores, coating surfaces of the cores with a polymer, and forming graphene layers covering the surfaces of the cores by thermally treating the cores coated with the polymer. Also, the cores may be removed after forming the graphene layers. In addition, the surfaces of the cores may be coated with a graphitization catalyst material before coating the cores with the polymer. Also, the cores may include metal particles that trap charges and may also function as a graphitization catalyst.
Abstract:
A method of directly growing graphene of a graphene-layered structure, the method including ion-implanting at least one ion of a nitrogen ion and an oxygen ion on a surface of a silicon carbide (SiC) thin film to form an ion implantation layer in the SiC thin film; and heat treating the SiC thin film with the ion implantation layer formed therein to graphenize a SiC surface layer existing on the ion implantation layer.
Abstract:
Provided are a method of doping carbon nanotubes, p-doped carbon nanotubes prepared using the method, and an electrode, a display device or a solar cell including the carbon nanotubes. Particularly, a method of doping carbon nanotubes having improved conductivity by reforming the carbon nanotubes using an oxidizer, doped carbon nanotubes prepared using the method, and an electrode, a display device or a solar cell including the carbon nanotubes are provided.
Abstract:
Provided are a method of doping carbon nanotubes, p-doped carbon nanotubes prepared using the method, and an electrode, a display device or a solar cell including the carbon nanotubes. Particularly, a method of doping carbon nanotubes having improved conductivity by reforming the carbon nanotubes using an oxidizer, doped carbon nanotubes prepared using the method, and an electrode, a display device or a solar cell including the carbon nanotubes are provided.
Abstract:
A method of preparing crystalline graphene includes performing a first thermal treatment including supplying heat to an inorganic substrate in a reactor, introducing a vapor carbon supply source into the reactor during the first thermal treatment to form activated carbon, and binding of the activated carbon on the inorganic substrate to grow the crystalline graphene.
Abstract:
Disclosed herein is an image display device having a plurality of light emitting diodes (LEDs), which can maintain a primary color which is desired to be expressed, and prevent an interference of other unwanted colors and a change of the primary color at the time of application of a light source of each light emitting diode. The image display device comprises: a first optical filter layer containing a violet wavelength-absorbing material having a wavelength range of from 380 nm to 450 nm such as Bi2O3 so as to prevent light having a wavelength ranging from 380 nm to 450 nm from being leaked out to an undesired region of an image display portion of the image display device; and a second optical filter layer such as a blue color filter layer so as to allow a white light to be expressed in a desired region of the image display portion.
Abstract translation:本文公开了一种具有多个发光二极管(LED)的图像显示装置,其可以保持期望表达的原色,并且防止其它不需要的颜色的干扰和原色的变化 应用每个发光二极管的光源。 图像显示装置包括:含有波长范围为380nm〜450nm的紫外线波长吸收材料的第一光学滤光层,例如Bi 2 O 3,以防止波长范围为380nm至450nm的光被泄漏 出射到图像显示装置的图像显示部分的不期望区域; 以及第二滤光器层,例如蓝色滤色器层,以便允许在图像显示部分的期望区域中表达白光。
Abstract:
Disclosed herein is a method for controlling the fluidity of a phosphor, a phosphor and a phosphor paste, the method comprising the steps of: treating the surface of a phosphor with a silane compound comprising a double bond; and polymerizing the monomer on the surface of the phosphor to form a polymer membrane thereon. The phosphor having the polymer membrane formed thereon exhibits significantly stabilized fluidity within a polymer encapsulant.