Abstract:
An embodiment of the present invention provides a phase locked loop that operates on clock signals derived from an RF clock signal generated by the phase locked loop. A frequency reference input provides a reference clock. A controllable oscillator generates the RF clock signal. A phase detection circuit operates on the reference clock to provide digital phase error samples indicative of a phase difference between the reference clock and the RF clock. A dithering circuit is coupled to the reference signal and injects a short sequence dither signal into the reference signal in order to overcome quantization noise and thereby improve RMS phase-error detection for integer channels.
Abstract:
A novel and useful digitally controlled injection-locked RF oscillator with an auxiliary loop. The oscillator is injection locked to a time delayed version of its own resonating voltage (or its second harmonic) and its frequency is modulated by manipulating the phase and amplitude of injected current. The oscillator achieves a narrow modulation tuning range and fine step size of an LC tank based digitally controlled oscillator (DCO). The DCO first gets tuned to its center frequency by means of a conventional switched capacitor array. Frequency modulation is then achieved via a novel method of digitally controlling the phase and amplitude of injected current into the LC tank generated from its own resonating voltage. A very linear deviation from the center frequency is achieved with a much lower gain resulting in a very fine resolution DCO step size and high linearity without needing to resort to oversampled noise shaped dithering.
Abstract:
A novel and useful transmitter (TX) architecture for ultra-low power (ULP) radios. An all-digital PLL employs a digitally controlled oscillator (DCO) having switching current sources to reduce supply voltage and power consumption without sacrificing phase noise and startup margins. It also reduces 1/f noise allowing the ADPLL after settling to reduce its sampling rate or shut it off entirely during direct DCO data modulation. A switching power amplifier integrates its matching network while operating in class-E/F2 to maximally enhance its efficiency. The transmitter has been realized in 28 nm CMOS and satisfies all metal density and other manufacturing rules. It consumes 3.6 mW/5.5 mW while delivering 0 dBm/3 dBm RF power in Bluetooth Low-Energy.
Abstract:
A novel and useful fully integrated switched-mode wideband 60 GHz power amplifier architecture. Using an appropriate second-harmonic termination of its output matching network, the required systematic peak current of the final stage is reduced such that the PA functions as a class-E/F2 switched-mode PA at saturation. In addition, low/moderate magnetic coupling factor transformers in the intermediate stages enable the PA to reach a high power added efficiency (PAE) and bandwidth product. Transformers of low/moderate coupling are also utilized in the preliminary stages of the PA to improve the overall bandwidth. In addition, the PA exploits the different behavior of the output impedance matching network for differential mode (DM) and common mode (CM) excitations. The PA is also stabilized against the combination of DM and CM oscillation modes. The PA also provides a technique to stabilize transformer-based mm-wave amplifiers against various modes of undesired oscillations.
Abstract:
A novel and useful LC-tank digitally controlled oscillator (DCO) incorporating a split transformer configuration. The LC-tank oscillator exhibits a significant reduction in area such that it is comparable in size to conventional ring oscillators (ROs) while still retaining its salient features of excellent phase noise and low sensitivity to supply variations. The oscillator incorporates an ultra-compact split transformer topology that is less susceptible to common-mode electromagnetic interference than regular high-Q LC tanks which is highly desirable in SoC environments. The oscillator, together with a novel dc-coupled buffer, can be incorporated within a wide range of circuit applications, including clock generators and an all-digital phase-locked loop (ADPLL) intended for wireline applications.
Abstract:
A novel and useful digitally controlled injection-locked RF oscillator with an auxiliary loop. The oscillator is injection locked to a time delayed version of its own resonating voltage (or its second harmonic) and its frequency is modulated by manipulating the phase and amplitude of injected current. The oscillator achieves a narrow modulation tuning range and fine step size of an LC tank based digitally controlled oscillator (DCO). The DCO first gets tuned to its center frequency by means of a conventional switched capacitor array. Frequency modulation is then achieved via a novel method of digitally controlling the phase and amplitude of injected current into the LC tank generated from its own resonating voltage. A very linear deviation from the center frequency is achieved with a much lower gain resulting in a very fine resolution DCO step size and high linearity without needing to resort to oversampled noise shaped dithering.
Abstract:
A novel and useful look-ahead time to digital converter (TDC) that is applied to an all digital phase locked loop (ADPLL) as the fractional phase error detector. The deterministic nature of the phase error during frequency/phase lock is exploited to achieve a reduction in power consumption of the TDC. The look-ahead TDC circuit is used to construct a cyclic DTC-TDC pair which functions to reduce fractional spurs of the output spectrum in near-integer channels by randomly rotating the cyclic DTC-TDC structure so that it starts from a different point every reference clock thereby averaging out the mismatch of the elements. Associated rotation and dithering methods are also presented. The ADPLL is achieved using the look-ahead TDC and/or cyclic DTC-TDC pair circuit.
Abstract:
A method of estimating gain of a time-to-digital converter (TDC) includes: capturing a TDC output sample; calculating a gradient in response to the TDC output sample; and adjusting a TDC normalizing gain based on the calculating step. Another method of calibrating gain of a TDC includes: capturing a phase error which is derived from a TDC output sample, a reference phase and a variable phase; calculating a gradient in response to the phase error; and adjusting a TDC normalizing gain based on the calculating step.
Abstract:
A digitally-controlled power amplifier (DPA) with bandpass filtering includes a radio-frequency (RF) clock input, an amplitude control word (ACW) input, and a plurality of DPA cells. The RF clock input is arranged for receiving an RF clock. The ACW input is arranged for receiving a digital ACW signal. The DPA cells are coupled to the RF clock and the digital ACW signal, wherein at least one of the DPA cells is gradually turned on and off in response to at least one bit of the digital ACW signal.
Abstract:
A method of estimating mismatches of a time-to-digital converter (TDC) includes: capturing phase error samples; calculating difference between the phase error samples and an expected value of the phase error samples; and adjusting correction gain of the TDC based on the calculating step. Another method of estimating mismatches of a TDC includes: capturing TDC output code samples; storing a plurality of accumulation values corresponding to different TDC values respectively, wherein each accumulation value records a number of times a TDC value is carried by the TDC output code samples; calculating a desired value based on the accumulation values; calculating difference between the accumulation values and the desired value; and adjusting correction gain of the TDC based on the calculating step.