Abstract:
A headset driver circuit is described which comprises a connector interface. The connector interface comprises a first terminal, a second terminal and a third terminal for establishing respective electrical connections to a first speaker, a microphone and a common ground node of a headphone, earphone or headset, respectively. A first power amplifier is coupled to the first terminal to supply a first audio output signal to the first speaker of the headset. A first switch arrangement comprises a first ground switch is configured for selectively connecting and disconnecting the second terminal and a ground node of the headset driver circuit. The headset driver circuit further comprises a second ground switch configured for selectively connecting and disconnecting the third terminal and the ground node. The headset driver circuit also comprises a differential preamplifier, e.g. a microphone preamplifier, configured to generate a microphone output voltage where the differential preamplifier comprises a first signal input coupled to the second terminal and a second signal input coupled to the third terminal of the connector interface. An error suppression circuit is configured to sense or sample a noise or error voltage at the second terminal when ground connected or the third terminal when ground connected. The error suppression circuit is further configured to add the sensed or sampled noise or error voltage to a predetermined DC bias voltage and generate an error compensated DC bias voltage for the ungrounded one of the second and third terminals of the connector interface.
Abstract:
A DC-to-DC converter includes an error integrator that further includes a first amplifier and a second amplifier that each includes a first input for receiving a reference voltage and a second input for receiving a feedback voltage, a capacitor to an output of the second amplifier, and a resistor including a first end being coupled to an output of the first amplifier and a second end being coupled to the capacitor.
Abstract:
The ISG (Idle Stop & Go) system may include a vehicle information receiving unit receiving a vehicle information, and a control unit including an ISG operation logic which performs an idle stop when a preset idle stop condition is satisfied and restarts the engine when a preset restart condition of the engine is satisfied, and an ISG deactivation determination logic which determines whether a preset ISG deactivation condition is satisfied or not, based on the accumulated number of determinations that the idle stop condition is not satisfied, the accumulated number of idle stops, and the accumulated number of determinations that a performance time of the idle stop is smaller than a preset idle stop retention time, and deactivates the ISG operation logic when the ISG deactivation condition is satisfied.
Abstract:
A DC-to-DC converter includes an error integrator that further includes a first amplifier and a second amplifier that each includes a first input for receiving a reference voltage and a second input for receiving a feedback voltage, a capacitor to an output of the second amplifier, and a resistor including a first end being coupled to an output of the first amplifier and a second end being coupled to the capacitor.
Abstract:
An ISG system may include a shift stage sensing unit that senses a shift stage of a transmission, a parking sensing unit that senses a driver's intension of parking by recognizing at least one of whether a vehicle enters a parking lot and whether a parking assistant system may be operated, and an ISG controller that stops an idle-stop of an engine when the shift stage of the shift stage sensing unit may be at a reverse stage or the parking sensing unit senses the driver's intension of parking.
Abstract:
An apparatus and a method for controlling engine restarting of a vehicle includes a hood opening recognition switch automatically on when a hood of the vehicle is opened and outputting a hood opening recognition signal; a front sensor installed on the front of the vehicle and outputting a sensing signal by sensing an object positioned with a predetermined distance in front of the vehicle; a determination unit verifying whether at least one of the hood opening recognition signal and the sensing signal is inputted in the state where an engine of the vehicle is off; and a setting unit setting a lock of restarting of the engine when it is verified that at least one of the hood opening recognition signal and the sensing signal is inputted.
Abstract:
An ISG entry apparatus and method is capable of operating ISG logic without employing a battery sensor. The ISG entry apparatus includes a starting voltage detection unit detecting a starting voltage of an ISG vehicle having no battery sensor mounted therein, a cooling water detection unit detecting a cooling water temperature of the ISG vehicle, an ISG entry frequency detection unit detecting an ISG entry frequency of the ISG vehicle, an accumulated charge amount detection unit detecting an accumulated charge amount of the ISG vehicle during driving, a starting number counting unit counting the starting number of the ISG vehicle, and an engine control unit determining whether or not to enter a mode in which an ISG operation is performed based on the starting voltage, the cooling water temperature, the ISG entry frequency, the accumulated charge amount, and the starting number and performing an ISG operation.
Abstract:
A control method of restarting an engine of an AT ISG vehicle may include a first step of restarting the engine when a state of the vehicle satisfies a restart condition after an idle-stop, a second step of keeping a throttle valve constant at a first critical value or less when a positional value of an acceleration pedal may be equal to a second critical value or more after the first step, and a third step of opening a throttle valve until the positional value of the acceleration pedal detected by the acceleration pedal position sensor and a positional value of the throttle valve detected by a throttle valve position sensor may be matched after a critical time passes, a shifting may be completed after the restarting, or when the acceleration pedal may be pressed down less than at the second critical value after the first step.
Abstract:
A control method of an assist pump for automatic transmission of a vehicle is provided with an ISG system. The control method includes executing idle stop and go, detecting present transmission gear shift and operating an assist hydraulic pump at a predetermined standard RPM according to detected present transmission gear shift. The control method may reduce electric power consumption and enhance battery durability and fuel efficiency.
Abstract:
An ISG system prevents fuel consumption due to unnecessary idling, by controlling the start of an engine, in accordance with engine stop conditions and restart conditions of a vehicle equipped with an automatic transmission. A method includes determining whether prior conditions for engine stop in an engine controller when an engine is in operation is satisfied, determining whether the engine can be stopped, when the prior conditions for engine stop are satisfied, determining whether engine stop conditions is satisfied, when the engine can be stopped, stopping the engine that is in operation, when the engine stop conditions are satisfied, determining whether key start conditions are satisfied, when the engine is stopped, determining whether restart is possible, when the key start conditions are not satisfied, determining whether conditions for restart are satisfied, when restart is possible, and restarting the engine, when the restart conditions are satisfied.