Abstract:
An organic light emitting device (OLED) and a white light emitting device are provided. The OLED includes a substrate, a mesh shaped anode formed on the substrate and designed to pass light, a cathode facing the anode, and an organic light emitting layer located between the anode and the cathode.
Abstract:
A damper and a disk drive using the clamper. The damper includes a body, a movable member inserted into a guide portion protruding from a center of the body so that the movable member is moved up and down along the guide portion, and having a plurality of opposed bosses, an elastic member, inserted into the guide portion under the movable member, for elastically biasing the movable member upward, and a stationary member, installed on an upper portion of the guide portion, for preventing the movable member from being released from the guide portion.
Abstract:
A three-dimensional semiconductor memory device includes a substrate including a cell array region and a connection region and an electrode structure including first and second electrodes alternatingly and vertically stacked on the substrate and having a stair-step structure on the connection region. Each of the first and second electrodes may include electrode portions provided on the cell array region to extend in a first direction and to be spaced apart from each other in a second direction perpendicular to the first direction, an electrode connecting portion provided on the connection region to extend in the second direction and to horizontally connect the electrode portions to each other, and protrusions provided on the connection region to extend from the electrode connecting portion in the first direction and to be spaced apart from each other in the second direction.
Abstract:
An organic light emitting diode device is disclosed. The organic light emitting diode device includes a color calibration layer which is applied to the white sub-pixel. The color calibration layer selectively absorbs light in a given wavelength region thereby increasing luminance due to the white sub-pixel while simultaneously preventing the deformation of white color coordination. The contrast ratio may also be improved by reducing the reflection of external light, thereby minimizing the need for a polarizer, and the thickness of the device may thus be decreased and processing costs may be reduced.
Abstract:
The present disclosure relates to a semiconductor device including an oxygen gettering layer between a group III-V compound semiconductor layer and a dielectric layer, and a method of fabricating the semiconductor device. The semiconductor device may include a compound semiconductor layer; a dielectric layer disposed on the compound semiconductor layer; and an oxygen gettering layer interposed between the compound semiconductor layer and the dielectric layer. The oxygen gettering layer includes a material having a higher oxygen affinity than a material of the compound semiconductor layer.
Abstract:
A method for forming a minute pattern mask includes forming an etching target layer on a substrate. A convex pattern including a plurality of convex parts is formed on the etching target layer. A resin composition is coated on the convex pattern to form a resin layer including a first region neighboring the convex part and a second region positioned between the neighboring convex parts. The resin layer is ashed or etched to form the plurality of first resin patterns. The plurality of first resin patterns is processed to form a minute pattern mask including a plurality of second resin patterns. The etching target layer is etched using the plurality of second resin patterns as an etch mask to form a minute pattern.
Abstract:
A blue light-emitting device, and an organic light-emitting display including the blue light-emitting device, has a non-resonance structure including a blue light-emitting layer between a reflective electrode and a transparent electrode, and thus has an excellent process margin, an excellent luminance characteristic even in a wide optical viewing angle, and a high color reproduction satisfying an sRGB blue standard.
Abstract:
A nanocrystal electroluminescence device comprising a polymer hole transport layer, a nanocrystal light-emitting layer and an organic electron transport layer wherein the nanocrystal light-emitting layer is independently and separately formed between the polymer hole transport layer and the organic electron transport layer. According to the nanocrystal electroluminescence device, since the hole transport layer, the nanocrystal light-emitting layer and the electron transport layer are completely separated from one another, the electroluminescence device provides a pure nanocrystal luminescence spectrum having limited luminescence from other organic layers and substantially no influence by operational conditions, such as voltage. Further included is a method for fabricating the nanocrystal electroluminescence device.
Abstract:
Disclosed is a method for preparing a soybean paste including: flaking or crushing raw soybeans, immersing the resulting flaked or crushed soybeans in water, followed by cooking and cooling, homogeneously mixing the soybeans with koji bacteria and a bean or grain powder, followed by fermenting and drying, and mixing the meju with table salt and distilled water and aging the resulting mixture. In accordance with the method, the soybeans are flaked or crushed to advantageously reduce hydrating and cooking periods of soybeans, form cracks on the soybean surfaces and increase surface areas, and allow beneficial microorganisms to easily use nutrients contained in soybeans, thus increase enzyme production, considerably reduce fermentation period of meju and aging period of soybean paste, obtain manufacturing soybean pastes with superior quality and improve production efficiency.
Abstract:
In a semiconductor device, a first gate structure is provided in a cell transistor region and includes a floating gate electrode, a first dielectric layer pattern, and a control gate electrode including a first metal silicide pattern. A second gate structure is provided in a selecting transistor region and includes a first conductive layer pattern, a second dielectric layer pattern, and a first gate electrode including a second metal silicide pattern. A third gate structure is provided in a peripheral circuit region and includes a second conductive layer pattern, a third dielectric layer pattern including opening portions on the second conductive layer pattern, and a second gate electrode including a concavo-convex portion at an upper surface portion thereof and a third metal silicide pattern. The third metal silicide pattern has a uniform thickness.