Abstract:
A semiconductor process and structure is provided for use in single or dual damascene metallization processes. A thin metal layer which serves as an etch stop and masking layer is deposited upon a first dielectric layer. Then, a second dielectric layer is deposited upon the thin metallization masking layer. The thin metallization masking layer provides an etch stop to form the bottom of the in-laid conductor grooves. In a dual damascene process, the thin metallization masking layer leaves open the via regions. Thus, the conductor grooves above the metallization masking layer and the via regions may be etched in the first and second dielectric in one step. In a single damascene process, the thin metallization etch masking layer may cover the via regions. The etch stop and masking layer can be formed from any conductive or non-conductive materials whose chemical, mechanical, thermal and electrical properties are compatible with the process and circuit performance.
Abstract:
Method for fabrication of on-chip inductors and related structure are disclosed. According to one embodiment, inductors are formed by patterning conductors within a certain dielectric layer in a semiconductor die. Thereafter, the entire dielectric layer in the semiconductor die is subjected to a blanket implantation or sputtering of high permeability material. According to another embodiment, a first area in a semiconductor die is covered, for example, with photoresist. A second area in the semiconductor die includes a patterned conductor which is to be used as an inductor. The patterned conductor is also covered, for example, with photoresist. The second area, excluding the covered patterned conductor is subjected to implantation or sputtering of high permeability material. According to yet another embodiment, a first area of a semiconductor die is covered, for example, with photoresist. A second area in the semiconductor area includes a patterned conductor which is to be used as an inductor. This second area, including the patterned conductor, is subjected to implantation or sputtering of high permeability material. The implantation or sputtering of high permeability materials result in the inductors having much higher inductance values than they would otherwise have.
Abstract:
Method for dual damascene metallization of semiconductor workpieces which uses a process for creating an etch stop in an insulator thereby eliminating the need for deposition of an etch stop layer. Electron beam exposure is used to cure the insulator, or material having a low dielectric constant. Application of the electron beam to the low dielectric constant material converts the topmost layer of the low dielectric constant material to an etch stop layer, while rapid thermal heating cures the remainder of the low dielectric constant material. Creation of an etch stop layer in the low dielectric constant material can also be achieved by curing the low dielectric constant material using ion implantation.
Abstract:
Methods and structures are disclosed for advanced interconnects in sub-micron and sub-half-micron integrated circuit devices fabricated using a single damascene process. a dielectric etch-stop layer (e.g., silicon nitride) is deposited subsequent to rather than prior to CMP processing of the previous metallization layer (e.g., the conductive plug). This scheme effectively eliminates the effect of CMP-induced erosion on the etch-stop layer and therefore allows an extremely thin etch stop to be used. Moreover, a high etch-selectivity can be obtained for the trench etch, and all etch-stop material is removed from beneath the interconnect metal, thereby reducing parasitic effects. A patterned dielectric layer is used as a metal cap in place of the standard blanket silicon nitride layer, thus preventing the formation of blisters and bubbles associated with trapped moisture and gasses, and reducing interconnect capacitance.
Abstract:
A technique for fabricating a dual damascene interconnect structure using a low dielectric constant material as a dielectric layer or layers. A low dielectric constant (low-.epsilon.) dielectric material is used to form an inter-level dielectric (ILD) layer between metallization layers and in which via and trench openings are formed in the low-.epsilon. ILD. The dual damascene technique allows for both the via and trench openings to be filled at the same time.
Abstract:
A method of utilizing electroless copper deposition to form interconnects on a semiconductor wafer. Once a via or a trench is formed in a dielectric layer, a titanium nitride (TiN) or tantalum (Ta) barrier layer is blanket deposited. Then, a contact displacement technique is used to form a thin activation seed layer of copper on the barrier layer. An electroless deposition technique is then used to auto-catalytically deposit copper on the activated barrier layer. The electroless copper deposition continues until the via/trench is filled. Subsequently, the surface is polished by an application of chemical-mechanical polishing (CMP) to remove excess copper and barrier material from the surface, so that the only copper and barrier material remaining are in the via/trench openings. Then an overlying silicon nitride (SiN) layer is formed above the exposed copper in order to form a dielectric barrier layer. The copper interconnect is fully encapsulated from the adjacent material by the TiN (or Ta) and the SiN layers.
Abstract:
An electroless deposition apparatus and a method of electroless deposition that uses a single process chamber for performing multiple processes by moving through the process chamber a variety of fluids one at a time in a sequential order.
Abstract:
The present disclosure disclose a diaphragm dome, the diaphragm dome includes a first carbon fiber layer and a second carbon fiber layer which are alternatively arranged by stacking, the first carbon fiber layer and the second carbon fiber layer are respectively a single-layer structure formed by an one-way extended carbon fiber bundle, an extending direction of the carbon fiber bundle of the first carbon fiber layer is perpendicular to an extending direction of the carbon fiber bundle of the second carbon fiber layer, and a thickness difference exists between the first carbon fiber layer and the second carbon fiber layer. In the diaphragm dome provided by the present disclosure, the material has larger specific strength, thus can reduce the thickness of the diaphragm dome, the carbon fiber layers of the diaphragm dome are well adhered, which is not readily layered, and has good water resistance.
Abstract:
A sound generating device is provided in the present disclosure. The sound generating device includes a shell providing a receiving cavity, a sound generating body received in the receiving cavity and assembled to the shell, sound absorbing material filled in the receiving cavity, and an isolating member attached on the sound generating body. The sound generating body includes at least one air hole, and the isolating member covers the at least one air hole, the isolating member is configured for isolating the sound absorbing material from entering the sound generating body. The present disclosure further provides a method for making a sound generating device.
Abstract:
First information is received at a first pulse width modulation (PWM) module responsive to a chip select signal being asserted at a chip select input of a communication bus of the first PWM module during a first time. The first information is latched at a control register of the first PWM module in response to a first logic transition of the chip select signal. A first PWM signal is provided at a first output of the first PWM module beginning a predetermined amount of time after the first logic transition of the chip select signal, the first PWM signal generated by the first PWM module based upon the first information.