Abstract:
A lithium-metal battery, includes: a substrate; a cathode disposed on the substrate; a garnet solid-state electrolyte disposed on the cathode; and a lithium anode disposed on the garnet solid-state electrolyte, such that a discoloration layer is disposed at an interface of the lithium anode and garnet solid-state electrolyte, the discoloration layer includes: a first portion; and a second portion, such that the first portion has a lithium component and the second portion has a garnet component. A method of forming a lithium-metal battery, includes: stacking a garnet source with at least one lithium source; and heating the stack at a temperature of at least 300° C. for a time in a range of 1 sec to 20 min to form a discoloration layer, such that the discoloration layer is disposed at an interface of the garnet source and the lithium source.
Abstract:
A lithium-sulfur battery includes: a substrate; a composite cathode disposed on the substrate; a solid-state electrolyte disposed on the composite cathode; and a lithium anode disposed on the solid-state electrolyte, such that the composite cathode comprises: active elemental sulfur, conductive carbon, and sulfide electrolyte, and the sulfide electrolyte is uniformly coated on at least one surface of the conductive carbon. A method of forming a composite cathode for a lithium-sulfur battery includes: synthesizing dispersed carbon fiber from cotton to form carbonized dispersed cotton fiber (CDCF) powder; in-situ coating of the CDCF with an electrolyte component to form a composite powder; and mixing active elemental sulfur powder with the composite powder to form the composite cathode.
Abstract:
A method of making a ceramic honeycomb article which includes: applying at least one green membrane coating layer on a green substrate, the green substrate comprising a plurality of cells comprised of a plurality of interior channels and a plurality of porous interior walls between the channels; drying the at least one green membrane coating layer on the green substrate to produce a green coated substrate; and firing the green coated substrate into a porous substrate, wherein applying the at least one green membrane coating layer and the drying the at least one green membrane coating layer are repeated from 2 to 10 times prior to firing to form multiple green membrane coating layers on the green substrate and wherein the firing the green coated substrate forms a ceramic honeycomb article comprised of the porous substrate and multiple fired coating layers on the porous substrate.
Abstract:
An inorganic membrane filtration article and methods for making the same. The membrane filtration article includes a sintered flow-through ceramic honeycomb with a plurality of partition walls defining a plurality of open channels from an inlet end of the honeycomb to an outlet end of the honeycomb. The honeycomb is formed from a cordierite composition with low-sodium and/or low-potassium content for enhanced filtration performance.
Abstract:
A W and Ga co-doped garnet batch composition or Ta and Ga co-doped garnet batch composition including: a source of elemental Li in from 41 to 56 mol %; a source of elemental La in from 25 to 28 mol %; a source of elemental Zr in from 13 to 17 mol %; and a source of elemental co-dopant comprising a mixture of: a first dopant compound having gallium in from 2 to 17 mol %, and a second dopant compound having tungsten or tantalum in from 0.8 to 5 mol %, based on a batch total of 100 mol %. Also disclosed is a method of making and using the W and Ga co-doped garnet composition or Ta and Ga co-doped garnet composition, as defined herein, in an energy storage device.
Abstract:
A catalyst-free CVD method for forming graphene. The method involves placing a substrate within a reaction chamber, heating the substrate to a temperature between 600° C. and 1100° C., and introducing a carbon precursor into the chamber to form a graphene layer on a surface of the substrate. The method does not use plasma or a metal catalyst to form the graphene.
Abstract:
Absorbent structures for CO2 capture include a honeycomb substrate having partition walls that extend through the honeycomb substrate. The partition walls have channel surfaces that define a plurality of individual channels including a plurality of reaction channels and a plurality of heat-exchange channels. The reaction channels and the heat-exchange channels are arranged such that individual reaction channels are in thermal communication with individual heat-exchange channels. Surfaces of the reaction channels surfaces include a sorbent material, and surfaces of the heat-exchange channels include a coating layer. The coating layer includes a water-impermeable layer formed from a polymer material. The polymer material of the water-impermeable layer does not substantially penetrate into the sorbent material of the partition walls or of the reaction-channel surfaces. Methods for forming the absorbent structures include coating the surfaces of the heat-exchange channels with the polymer material using a liquid composition such as an aqueous polymer emulsion.
Abstract:
A porous ceramic honeycomb article comprising a honeycomb body formed from cordierite ceramic, wherein the honeycomb body has a porosity P %≧55% and a cell channel density CD≧150 cpsi. The porous channel walls have a wall thickness T, wherein (11+(300−CD)*0.03)≧T≧(8+(300−CD)*0.02), a median pore size ≦20 microns, and a pore size distribution with a d-factor of ≦0.35. The honeycomb body has a specific pore volume of VP≦0.22. The porous ceramic honeycomb article exhibits a coated pressure drop increase of ≦8 kPa at a flow rate of 26.5 cubic feet per minute when coated with 100 g/L of a washcoat catalyst and loaded with 5 g/L of soot.
Abstract:
A solid electrolyte including an inorganic lithium ion conductive film and a porous layer on a surface of the inorganic lithium ion conductive film, wherein the porous layer includes a first porous layer and a second porous layer, and the second porous layer is disposed between the inorganic lithium ion conductive film and the first porous layer, and wherein the first porous layer has a size greater which is than a pore size of the second porous layer.
Abstract:
Batteries include a cathode, an interlayer disposed on the cathode, a solid-state electrolyte disposed on the interlayer, and a lithium anode disposed on the solid-state electrolyte. The interlayer includes a deep-eutectic-solvent-based electrolyte including a lithium salt and a sulfone compound. Methods of forming a battery comprising disposing a deep-eutectic-solvent-based electrolyte comprising a lithium salt and a sulfone compound on a first major surface of a cathode. Methods further comprising disposing a solid-state electrolyte over the first major surface of the cathode. The deep-eutectic-solvent-based electrolyte is positioned between the cathode and the solid-state electrolyte.