Abstract:
An apparatus for supporting a wafer includes a base, and a gas-penetration layer. The gas-penetration layer and a portion of the base directly underlying the gas-penetration layer form a gas passage therebetween. The gas passage is configured to be sealed by the wafer placed directly over the gas-penetration layer. The apparatus further includes a valve connected to the gas passage.
Abstract:
A device includes a substrate, and a plurality of dielectric layers over the substrate. A plurality of metallization layers is formed in the plurality of dielectric layers, wherein at least one of the plurality of metallization layers comprises a metal pad. A through-substrate via (TSV) extends from the top level of the plurality of the dielectric layers to a bottom surface of the substrate. A deep conductive via extends from the top level of the plurality of dielectric layers to land on the metal pad. A metal line is formed over the top level of the plurality of dielectric layers and interconnecting the TSV and the deep conductive via.
Abstract:
A method of forming an integrated circuit structure includes forming a first insulation region and a second insulation region in a semiconductor substrate and facing each other; and forming an epitaxial semiconductor region having a reversed T-shape. The epitaxial semiconductor region includes a horizontal plate including a bottom portion between and adjoining the first insulation region and the second insulation region, and a fin over and adjoining the horizontal plate. The bottom of the horizontal plate contacts the semiconductor substrate. The method further includes forming a gate dielectric on a top surface and at least top portions of sidewalls of the fin; and forming a gate electrode over the gate dielectric.
Abstract:
A semiconductor device and a method of manufacturing are provided. A substrate has a gate stack formed thereon. Ultra-shallow junctions are formed by depositing an atomic layer of a dopant and performing an anneal to diffuse the dopant into the substrate on opposing sides of the gate stack. The substrate may be recessed prior to forming the atomic layer and the recess may be filled by an epitaxial process. The depositing, annealing, and, if used, epitaxial growth may be repeated a plurality of times to achieve the desired junctions. Source/drain regions are also provided on opposing sides of the gate stack.
Abstract:
A composite barrier layer provides superior barrier qualities and superior adhesion properties to both dielectric materials and conductive materials as the composite barrier layer extends throughout the semiconductor device. The composite barrier layer may be formed in regions where it is disposed between two conductive layers and in regions where it is disposed between a conductive layer and a dielectric material. The composite barrier layer may consist of various pluralities of layers and the arrangement of layers that form the composite barrier layer may differ as the barrier layer extends throughout different sections of the device. Amorphous layers of the composite barrier layer are generally disposed to form boundaries with dielectric materials and crystalline layers are generally disposed to form boundaries with conductive materials such as interconnect materials.
Abstract:
A semiconductor device having a nonconductive cap layer comprising a first metal element. The nonconductive cap layer comprises a first metal nitride, a first metal oxide, or a first metal oxynitride over conductive lines and an insulating material between the conductive lines. An interface region may be formed over the top surface of the conductive lines, the interface region including the metal element of the cap layer. The cap layer prevents the conductive material in the conductive lines from migrating or diffusing into adjacent subsequently formed insulating material layers. The cap layer may also function as an etch stop layer.
Abstract:
A process for improving the adhesion between an underlying copper structure, and overlying materials and structures, has been developed. The process features formation of a tantalum nitride layer on a copper structure, wherein the copper structure is located in a damascene type opening. To obtain the maximum adhesion benefit the tantalum nitride layer is formed via an atomic deposition layer procedure, performed at specific deposition conditions. The adhesion between the underlying copper structure and overlying materials such as a silicon nitride etch stop layer, as well the adhesion between the lower level copper structure and overlying upper level metal interconnect structures, is improved as a result of the presence of the atomic layer deposited tantalum nitride layer.
Abstract:
An opening in a dielectric layer having a unique barrier layer structure is provided. In an embodiment, the opening is a via and a trench. The barrier layer, which may comprise one or more barrier layers, is formed such that the ratio of the thickness of the barrier layers along a sidewall approximately midway between the bottom of the trench and the top of the dielectric layer to the thickness of the barrier layers along the bottom of the trench is greater than about 0.55. In another embodiment, the ratio of the thickness of the barrier layers along a sidewall approximately midway between the bottom of the trench and the top of the dielectric layer to the thickness of the barrier layers along the bottom of the via is greater than about 1.0. An underlying conductive layer may be recessed.
Abstract:
An opening in a semiconductor device with improved step coverage. The opening comprises a dielectric layer overlying a substrate, having at least one via opening to expose the substrate. The via opening comprises a step region in the upper portion of the via opening and a concave profile region with respect to the dielectric layer in the lower portion of the via opening. A semiconductor device with the opening is also disclosed.
Abstract:
An opening in a dielectric layer having a unique barrier layer structure is provided. In an embodiment, the opening is a via and a trench. The barrier layer, which may comprise one or more barrier layers, is formed such that the ratio of the thickness of the barrier layers along a sidewall approximately midway between the bottom of the trench and the top of the dielectric layer to the thickness of the barrier layers along the bottom of the trench is greater than about 0.55. In another embodiment, the ratio of the thickness of the barrier layers along a sidewall approximately midway between the bottom of the trench and the top of the dielectric layer to the thickness of the barrier layers along the bottom of the via is greater than about 1.0. An underlying conductive layer may be recessed.