摘要:
An integrated advanced method for forming a semiconductor device utilizes a sacrificial stress layer as part of a film stack that enables spatially selective silicide formation in the device. The low-resistance portion of the device to be silicided includes NMOS transistors and PMOS transistors. The stressed film may be a tensile or compressive nitride film. An annealing process is carried out prior to the silicide formation process. During the annealing process, the stressed nitride film preferentially remains over either the NMOS transistors or PMOS transistors, but not both, to optimize device performance. A tensile nitride film remains over the NMOS transistors but not the PMOS transistors while a compressive nitride film remains over the PMOS transistors but not the NMOS transistors, during anneal.
摘要:
A method of dry etching a dielectric layer is provided that prevents or significantly reduces deep ultraviolet photoresist damage and bird's beak problems. The dry etch method provided comprises the steps of providing a substrate having a dielectric layer overlying at least a portion of the substrate's surface; applying a deep ultraviolet (DUV) photoresist mask having a pattern of exposed area on at least a portion of the dielectric layer; and etching the masked dielectric layer with a plasma formed from a mixture of gases comprising a gaseous fluorine species, hydrogen, and helium.
摘要:
A method of manufacturing a semiconductor device is provided. A nickel silicide layer (e.g., NiSi) is formed on a substrate. Next, a hydrogen plasma treatment may be performed on the silicide layer, which may induce the formation of metal/silicon hydride bonds in the silicide layer. An etch stop layer is formed over the silicide layer. A dielectric layer is formed over the etch stop layer. An opening is formed in the dielectric layer. A portion of the etch stop layer is etched away at the opening to expose at least a portion of the silicide layer therebeneath. The etch chemistry mixture used during the etching step preferably includes hydrogen gas. The change in sheet resistance for the exposed silicide layer portion at the opening after the etching step, as compared to before the etching step, is preferably not greater than about 0.10 ohms/square.
摘要:
An improved method of etching very small contact holes through dielectric layers used to separate conducting layers in multilevel integrated circuits formed on semiconductor substrates has been developed. The method uses bi-level ARC coatings in the resist structure and a unique combination of gaseous components in a plasma etching process which is used to dry develop the bi-level resist mask as well as etch through a silicon oxide dielectric layer. The gaseous components comprise a mixture of a fluorine containing gas, such as C4F8, C5F8, C4F6, CHF3 or similar species, an inert gas, such as helium or argon, an optional weak oxidant, such as CO or O2 or similar species, and a nitrogen source, such as N2, N2O, or NH3 or similar species. The patterned masking layer can be used to reliably etch contact holes in silicon oxide layers on semiconductor substrates, where the holes have diameters of about 0.1 micron or less.
摘要翻译:已经开发了一种通过介电层蚀刻非常小的接触孔的改进方法,其用于在半导体衬底上形成的多层集成电路中分离导电层。 该方法在抗蚀剂结构中使用双层ARC涂层,并且在等离子体蚀刻工艺中使用气态组分的独特组合,其用于干燥显影双电平抗蚀剂掩模以及通过氧化硅介电层进行蚀刻。 气态组分包括含氟气体如C 4 F 8,C 5 F 8,C 4 F 6,CHF 3或类似物质,惰性气体如氦气或氩气,任选的弱氧化剂如CO或O 2或类似物质的混合物,以及 氮源,例如N 2,N 2 O或NH 3或类似物质。 图案化掩模层可用于可靠地蚀刻半导体衬底上的氧化硅层中的接触孔,其中孔的直径为约0.1微米或更小。
摘要:
A method is provided for improving the tungsten, W-filling of hole openings in semiconductor substrates. This is accomplished by forming an opening—which can be used either as a contact or via hole—with a faceted entrance along with tapered side-walls. This combination of faceted entrance and tapered side-walls improves substantially the tungsten W-filling of contact/via holes in substrates without the formation of key-holes, thereby resulting in metal plugs of high electrical integrity and high reliability.
摘要:
The present invention provides a method for forming a bonding pad having a low contact resistance. The method includes steps of: a) forming a bonding pad structure on a substrate having a metal layer by forming a passivation layer over said metal layer and etching the passivation layer with a fluorine-containing gas by which a fluorine-containing layer is formed on a surface of said bonding pad structure; and b) removing the fluorine-containing layer for reducing a contact resistance of said bonding pad structure.
摘要:
The present invention provides aqueous compositions for cleaning integrated circuit substrates. Specifically, in the cleaning of an integrated circuit substrate, disclosed is a method for removing the by-products of the high-k dielectric dry etch process from the integrated circuit substrate, the method including: contacting the integrated circuit substrate with an aqueous composition including an amount, effective for the purpose of a (a) hydrogen fluoride, followed by (b) a mixture of hydrogen peroxide with a compound selected from the group consisting of ammonium hydroxide, hydrochloric acid and sulfuric acid.
摘要:
A fully dry etch method is described for removing a high k dielectric layer from a substrate without damaging the substrate and has a high selectivity with respect to a gate layer. The etch is comprised of BCl3, a fluorocarbon, and an inert gas. A low RF bias power is preferred. The method can also be used to remove an interfacial layer between the substrate and the high k dielectric layer. A HfO2 etch rate of 55 Angstroms per minute is achieved without causing a recess in a silicon substrate and with an etch selectivity to polysilicon of greater than 10:1. Better STI oxide divot control is also provided by this method. The etch through the high k dielectric layer may be performed in the same etch chamber as the etch process to form a gate electrode.
摘要:
A new method for fabricating a borderless interconnection in a semiconductor device is provided. During fabrication, the device includes an interlevel dielectric (ILD) layer, a metal silicide layer, and a stop layer disposed between the ILD and metal silicide layers. The stop layer may be formed of silicon nitride or silicon oxynitride, and the metal silicide layer may be a nickel silicide. The method includes etching the ILD layer to expose at least a portion of the stop layer and then performing a nitrogen plasma treatment on the exposed portion of the stop layer. After the treatment, the exposed portion of the stop layer is removed to provide the interconnection hole. Because of the plasma treatment, damage to the metal silicide underlying the stop layer will be minimized when the stop layer is removed.
摘要:
A method for using an isotropic wet etching process chemical process for trimming semiconductor feature sizes with improved critical dimension control including providing a hard mask overlying a substrate included in a semiconductor wafer said hard mask patterned for masking a portion of the substrate for forming a semiconductor feature according to an anisotropic plasma etching process; isotropically wet etching the hard mask to reduce a dimension of the hard mask prior to carrying out the anisotropic plasma etching process; and, anisotropically plasma etching a portion of the substrate not covered by the hard mask to form the semiconductor feature.