Unipolar semiconductor laser
    32.
    发明授权
    Unipolar semiconductor laser 失效
    单极半导体激光器

    公开(公告)号:US5509025A

    公开(公告)日:1996-04-16

    申请号:US371000

    申请日:1995-01-09

    摘要: This application discloses, to the best of our knowledge, the first unipolar laser. An exemplary embodiment of the laser was implemented in the GaInAs/AlInAs system and emits radiation of about 4.2 .mu.m wavelength. Embodiments in other material systems are possible, and the lasers can be readily designed to emit at a predetermined wavelength in a wide spectral region. We have designated the laser the "quantum cascade" (QC) laser. The QC laser comprises a multilayer semiconductor structure that comprises a multiplicity of essentially identical undoped "active" regions, a given active region being separated from an adjoining one by a doped "energy relaxation" region. In a currently preferred embodiment each active region comprises three coupled quantum wells designed to facilitate attainment of population inversion. In the currently preferred embodiment the energy relaxation regions are digitally graded gap regions. However, other energy relaxation regions are possible. Disclosed are also embodiments that rely primarily on "vertical" transitions in a given quantum well. Such lasers preferably comprise superlattice Bragg reflectors. The unipolar plasma in a unipolar laser can be manipulated by means of an electric "control" field, facilitating, for instance, beam steering or external control of the modal gain of the laser. Means for accomplishing this are discussed.

    摘要翻译: 根据我们所知,本应用公开了第一单极激光器。 激光器的示例性实施例在GaInAs / AlInAs系统中实现并且发射约4.2μm波长的辐射。 其他材料系统中的实施例是可能的,并且激光器可以容易地设计成在宽光谱区域中以预定波长发射。 我们已经将激光器命名为“量子级联”(QC)激光器。 QC激光器包括多层半导体结构,其包括多个基本上相同的未掺杂的“有源”区域,给定的有源区域通过掺杂的“能量弛豫”区域与邻接的区域分离。 在当前优选实施例中,每个有源区域包括三个耦合的量子阱,被设计成有助于达到群体反转。 在当前优选的实施例中,能量松弛区域是数字渐变间隙区域。 然而,其他能量松弛区也是可能的。 公开的还是主要依赖于给定量子阱中的“垂直”跃迁的实施例。 这种激光器优选地包括超晶格布拉格反射器。 单极激光器中的单极性等离子体可以通过电气“控制”场进行操纵,从而有助于例如光束转向或激光的模态增益的外部控制。 讨论了实现这一点的手段。

    Devices with Schottky metal contacts filling a depression in a
semi-conductor body
    36.
    发明授权
    Devices with Schottky metal contacts filling a depression in a semi-conductor body 失效
    具有肖特基金属触点的器件填充半导体体中的凹陷

    公开(公告)号:US4201998A

    公开(公告)日:1980-05-06

    申请号:US910118

    申请日:1978-05-30

    摘要: A Schottky barrier semiconductor device and process for making same is described wherein edge breakdown is avoided by making the rectifying contact in a curved depression in an epitaxial active layer having a nonuniform doping profile. The depression is formed by anodizing a portion of the epitaxial layer and etching the anodic oxide. Etching and electroplating of the contact are done in the same solution to avoid contamination of the metal-semiconductor interface.

    摘要翻译: 描述了肖特基势垒半导体器件及其制造方法,其中通过在具有不均匀掺杂分布的外延有源层中的弯曲凹陷中使整流接触避免了边缘击穿。 通过阳极氧化外延层的一部分并蚀刻阳极氧化物形成凹陷。 接触的蚀刻和电镀在相同的解决方案中进行,以避免金属 - 半导体界面的污染。

    Nonalloyed ohmic contacts to n-type Group III(a)-V(a) semiconductors
    37.
    发明授权
    Nonalloyed ohmic contacts to n-type Group III(a)-V(a) semiconductors 失效
    n型III族(a)-V(a)半导体的非合金欧姆接触

    公开(公告)号:US4186410A

    公开(公告)日:1980-01-29

    申请号:US919624

    申请日:1978-06-27

    摘要: A nonalloyed ohmic contact (110-112, 120-122) to an n-type Group III(a)-V(a) compound semiconductor body (102-104) is formed by epitaxially growing a Group III(a)-V(a) n.sup.++ -layer (106-108, 106'-108') doped to at least 10.sup.19 cm.sup.-3 between the semiconductor body and a metal contact layer (110-112). The metal layer forms an ohmic contact without requiring heating above the eutectic temperature. In order to avoid contamination of the metal-semiconductor interface, a metal contact layer (120-122) may be deposited in situ after MBE growth of the n.sup.++ -layer. This technique results in both a metal-semiconductor interface with smoother morphology and also an ohmic contact without heating above the eutectic temperature. These procedures are specifically described with reference to the fabrication of GaAs FETs.

    摘要翻译: 通过外延生长III族(a)-V(a)-V(a)-V(a)化合物半导体本体(102-104)的非合金欧姆接触(110-112,120-122) a)在半导体本体和金属接触层(110-112)之间掺杂至至少1019cm-3的n ++层(106-108,106'-108')。 金属层形成欧姆接触,而不需要高于共晶温度的加热。 为了避免金属 - 半导体界面的污染,金属接触层(120-122)可以在n ++层的MBE生长之后原位沉积。 该技术导致具有更平滑形态的金属 - 半导体界面以及不超过共晶温度的加热的欧姆接触。 参考GaAs FET的制造具体描述这些步骤。