摘要:
The disclosed unipolar quantum cascade (QC) laser comprises a multiplicity of essentially identical active regions, with adjacent active regions separated by a superlattice carrier injection/relaxation region. A given active region contains a single quantum well with at least two electron states. Lasing is obtained without global intersubband population inversion. Instead, there is believed to exist local population inversion in a small region of k-space near k=0, corresponding to electron energies approximately within an optical phonon energy (.about.35 meV) from the bottom of the lower subband. A novel design feature that can be used to improve the thermal characteristics of substantially any QC laser is also disclosed.
摘要:
This application discloses, to the best of our knowledge, the first unipolar laser. An exemplary embodiment of the laser was implemented in the GaInAs/AlInAs system and emits radiation of about 4.2 .mu.m wavelength. Embodiments in other material systems are possible, and the lasers can be readily designed to emit at a predetermined wavelength in a wide spectral region. We have designated the laser the "quantum cascade" (QC) laser. The QC laser comprises a multilayer semiconductor structure that comprises a multiplicity of essentially identical undoped "active" regions, a given active region being separated from an adjoining one by a doped "energy relaxation" region. In a currently preferred embodiment each active region comprises three coupled quantum wells designed to facilitate attainment of population inversion. In the currently preferred embodiment the energy relaxation regions are digitally graded gap regions. However, other energy relaxation regions are possible. Disclosed are also embodiments that rely primarily on "vertical" transitions in a given quantum well. Such lasers preferably comprise superlattice Bragg reflectors. The unipolar plasma in a unipolar laser can be manipulated by means of an electric "control" field, facilitating, for instance, beam steering or external control of the modal gain of the laser. Means for accomplishing this are discussed.
摘要:
An avalanche photodetector using a quantum well superlattice in which impact ionization of carriers in the well layers occurs across the band-edge discontinuity is described.
摘要:
Heterojunction devices having doping interface dipoles near the heterojunction interface are disclosed. The doping interface dipoles comprise two charge sheets of different conductivity type which are positioned within a carrier mean free path of the heterojunction interface.
摘要:
A metal gate field effect transistor has its source and drain located on one major surface of a gallium arsenide layer, while its gate electrode forms a Schottky barrier contact to an opposed major surface of the layer in a self-aligned relationship to the source and drain.
摘要:
A Schottky barrier semiconductor device and process for making same is described wherein edge breakdown is avoided by making the rectifying contact in a curved depression in an epitaxial active layer having a nonuniform doping profile. The depression is formed by anodizing a portion of the epitaxial layer and etching the anodic oxide. Etching and electroplating of the contact are done in the same solution to avoid contamination of the metal-semiconductor interface.
摘要:
A nonalloyed ohmic contact (110-112, 120-122) to an n-type Group III(a)-V(a) compound semiconductor body (102-104) is formed by epitaxially growing a Group III(a)-V(a) n.sup.++ -layer (106-108, 106'-108') doped to at least 10.sup.19 cm.sup.-3 between the semiconductor body and a metal contact layer (110-112). The metal layer forms an ohmic contact without requiring heating above the eutectic temperature. In order to avoid contamination of the metal-semiconductor interface, a metal contact layer (120-122) may be deposited in situ after MBE growth of the n.sup.++ -layer. This technique results in both a metal-semiconductor interface with smoother morphology and also an ohmic contact without heating above the eutectic temperature. These procedures are specifically described with reference to the fabrication of GaAs FETs.
摘要:
In a metal-insulator-semiconductor (MIS) structure, the I-layer comprises a single-crystal, semi-insulating layer which forms a substantially lattice-matched heterojunction with the underlying S-layer. Illustratively, the structure, grown by MBE, includes an indirect gap AlGaAs I-layer doped with a deep level impurity such as oxygen, iron or chromium, and a GaAs S-layer. GaAs FETs incorporating this MIS structure are described.