Abstract:
A method includes forming a multilayered stack on a surface of a supporting layer. The multilayered stack is composed of alternating layers of compressively strained Silicon Germanium (Si1-xGex) and tensily strained Carbon-doped Silicon (Si:C). The method further includes etching the multilayered stack to form at least one Fin precursor structure and annealing the Fin precursor structure to remove Carbon from the strained Si:C layers to form Carbon-depleted layers and to diffuse Germanium from the Si1-xGex layers into the Carbon-depleted layers producing a Si1-xGex Fin. A structure that is disclosed includes a Semiconductor on Insulator (SOI) layer disposed on a layer of buried oxide and a multilayered stack on a surface of the SOI layer. The multilayered stack is composed of alternating layers of compressively strained Si1-xGex and tensily strained Si:C. The structure further includes a hardmask layer disposed on a top surface of the multilayered stack.
Abstract:
An SOI substrate, a semiconductor device, and a method of backgate work function tuning. The substrate and the device have a plurality of metal backgate regions wherein at least two regions have different work functions. The method includes forming a mask on a substrate and implanting a metal backgate interposed between a buried oxide and bulk regions of the substrate thereby producing at least two metal backgate regions having different doses of impurity and different work functions. The work function regions can be aligned such that each transistor has different threshold voltage. When a top gate electrode serves as the mask, a metal backgate with a first work function under the channel region and a second work function under the source/drain regions is formed. The implant can be tilted to shift the work function regions relative to the mask.
Abstract:
A semiconductor structure is provided that includes a material stack including an epitaxially grown semiconductor layer on a base semiconductor layer, a dielectric layer on the epitaxially grown semiconductor layer, and an upper semiconductor layer present on the dielectric layer. A capacitor is present extending from the upper semiconductor layer through the dielectric layer into contact with the epitaxially grown semiconductor layer. The capacitor includes a node dielectric present on the sidewalls of the trench and an upper electrode filling at least a portion of the trench. A substrate contact is present in a contact trench extending from the upper semiconductor layer through the dielectric layer and the epitaxially semiconductor layer to a doped region of the base semiconductor layer. A substrate contact is also provided that contacts the base semiconductor layer through the sidewall of a trench. Methods for forming the above-described structures are also provided.
Abstract:
One method disclosed includes, among other things, forming an overall fin structure having a stepped cross-sectional profile, the fin structure having an upper part and a lower part positioned under the upper part, wherein the upper part has a first width and the lower part has a second width that is less than the first width, forming a layer of insulating material in trenches adjacent the overall fin structure such that the upper part of the overall fin structure and a portion of the lower part of the overall fin structure are exposed above an upper surface of the layer of insulating material, and forming a gate structure around the exposed upper part of the overall fin structure and the exposed portion of the lower part of the overall fin structure.
Abstract:
A method of forming a semiconductor device that includes forming a plurality of semiconductor pillars. A dielectric spacer is formed between at least one set of adjacent semiconductor pillars. Semiconductor material is epitaxially formed on sidewalls of the adjacent semiconductor pillars, wherein the dielectric spacer obstructs a first portion of epitaxial semiconductor material formed on a first semiconductor pillar from merging with a second portion of epitaxial semiconductor material formed on a second semiconductor pillar.
Abstract:
A method of isolating a semiconductor fin from an underlying substrate including forming a masking layer around a base portion of the fin, forming spacers on a top portion of the fin above the masking layer, removing the masking layer to expose the base portion of the fin, and converting the base portion of the fin to an isolation region that electrically isolates the fin from the substrate. The base portion of the fin may be converted to an isolation region by oxidizing the base portion of the fin, using for example a thermal oxidation process. While converting the base portion of the fin to an isolation region, the spacers prevent the top portion of the fin from also being converted.
Abstract:
A method for colorimetric radiation dosimetry includes subjecting an aggregate including a polymeric matrix having uniformly dispersed nanoparticles therein to radiation. The aggregate is soaked in a solution selected to dissolve decomposed pieces of the polymeric matrix to release into the solution nanoparticles from the decomposed pieces. Color of the solution is compared to a reference to determine a dose of radiation based on number of liberated nanoparticles.
Abstract:
A semiconductor structure is provided that contains silicon fins having different heights, while maintaining a reasonable fin height to width ratio for process feasibility. The semiconductor structure includes a first silicon fin of a first height that is located on a first buried oxide structure. The structure further includes a second silicon fin of a second height that is located on a second buried oxide structure that is spaced apart from the first buried oxide structure. The second height of the second silicon fin is greater than the first height of the first silicon fin, yet a topmost surface of the first silicon fin is coplanar of a topmost surface with the second silicon fin.
Abstract:
A semiconductor device includes a silicon-on-insulator (SOI) substrate having a buried oxide (BOX) layer, and a plurality of semiconductor fins formed on the BOX layer. The plurality of semiconductor fins include at least one pair of fins defining a BOX region therebetween. Gate lines are formed on the SOI substrate and extend across the plurality of semiconductor fins. Each gate line initially includes a dummy gate and a hardmask. A high dielectric (high-k) layer is formed on the hardmask and the BOX regions. At least one spacer is formed on each gate line such that the high-k layer is disposed between the spacer and the hardmask. A replacement gate process replaces the hardmask and the dummy gate with a metal gate. The high-k layer is ultimately removed from the gate line, while the high-k layer remains on the BOX region.
Abstract:
A semiconductor structure is provided that includes a semiconductor on insulator (SOI) substrate comprising a bottom semiconductor layer, an epitaxial semiconductor layer present on the bottom semiconductor layer, a buried insulator layer present on the epitaxial semiconductor layer, and a top semiconductor layer present on the buried insulator layer. A deep trench moat (DTMOAT) is disposed in the SOI substrate and has a bottom surface contacting a dopant region of the bottom semiconductor layer. A moat contact electrically connecting the DTMOAT to the epitaxial semiconductor layer of the SOI substrate. Charges accumulated in the DTMOAT can be discharged through the heavily doped epitaxial semiconductor layer to ground, thus preventing the DTMOAT failure caused by the process-induced charge accumulation.