Abstract:
A sleek, low-profile wall-mountable thermostat for controlling an HVAC system is described. The thermostat includes a ring-shaped controller that rotates about a central axis, and an optical sensor directed away from the central axis and toward a radially inward-facing surface of the ring-shaped controller so as to accurately detect optical signals indicating controller's rotational movement.
Abstract:
A thermostat user interface for a network-connected thermostat is described. The thermostat includes a frustum-shaped shell body having a circular cross-section and a sidewall extending between first and second ends, the second end being user-facing when the thermostat is wall-mounted; a circular rotatable ring being user rotatable for adjusting a setting of the thermostat; and a circular cover including a clear circular center portion surrounded by a painted outer portion. The clear circular center portion permits a corresponding circular portion of a non-circular dot-matrix color display element to be visible through the circular cover and the painted outer portion masks a remaining portion of the non-circular dot-matrix color display element so as to create a circular graphical user interface.
Abstract:
A sleek, low-profile wall-mountable thermostat for controlling an HVAC system is described. The thermostat includes a ring-shaped controller that rotates about a central axis, and an optical sensor directed away from the central axis and toward a radially inward-facing surface of the ring-shaped controller so as to accurately detect optical signals indicating controller's rotational movement.
Abstract:
An occupancy sensing electronic thermostat is described that includes a thermostat body, an electronic display that is viewable by a user in front of the thermostat, a passive infrared sensor for measuring infrared energy and an infrared energy directing element formed integrally with a front surface of the thermostat body. The passive infrared sensor may be positioned behind the infrared energy directing element such that infrared energy is directed thereonto by the infrared energy directing element. The thermostat may also include a temperature sensor and a microprocessor programmed to detect occupancy based on measurements from the passive infrared sensor.
Abstract:
Methods and devices for controlling a heating, ventilation, and air conditioning (HVAC) system by a thermostat are provided. Input can be received from a user via a thermostat, the input being indicative of an adjustment of an HVAC-related setting. On a real-time basis, the HVAC-related setting that is being adjusted can be compared against a feedback criterion designed to indicate a circumstance under which feedback is to be presented to the user. The circumstance can be indicative of an achievement of a HVAC-related setting of a predetermined responsibility level with respect to an energy usage of the HVAC system. Upon a real-time determination that the feedback criterion is satisfied, visual feedback can be caused to be presented to the user in real-time. The real-time feedback can include a visual icon having a visual appeal corresponding to a desirability of the satisfaction of the feedback criterion.
Abstract:
Various arrangements of smart devices are presented. Such a smart device may include a case, a wireless interface, a light sensor that detects an ambient brightness level of an ambient environment of the smart device, a motion sensor that detects motion of a user in the ambient environment of the smart device, a light that is capable of outputting light into the ambient environment of the smart device, and a processing system. The processing system may cause the light to illuminate based on: the message indicating that the lighting feature has been activated; the ambient brightness level being below the threshold brightness value; and the user moving in the ambient environment of the smart device.
Abstract:
A control system may include a thermostat device and boiler control device. The thermostat device may be configured to receive electrical power from second wiring terminals and provide control signals to boiler control device using a second radio when wires are not present in first wiring terminals. The thermostat device may also be configured to receive electrical power from the first wiring terminals and provide the coded control signals to the boiler control device through the first wiring terminals when wires are present in the first wiring terminals. The boiler control device may be configured to receive the control signals from the thermostat device using a third radio and selectively couple the third wiring terminals to fifth wiring terminals to selectively control activation of the boiler-based heating system when wires are not present in fourth wiring terminals.
Abstract:
A hazard detector may include a light sensor that senses a brightness level in an ambient environment. The hazard detector can have a processing system that receives an indication of the brightness level in the ambient environment from the light sensor. The processing system may then determine whether illumination in the ambient environment has been dimmed. Responsive to the dimming, the processing system may access information representative of a status of one or more components of the hazard detector. An illumination state may then be selected from a plurality of illumination states based on the accessed information representative of the status of the one or more components of the hazard detector. A light may then be illuminated based on the selected illumination state.
Abstract:
HVAC schedules may be programmed for a thermostat using a combination of pre-existing schedules or templates and automated schedule learning. For example, a pre-existing schedule may be initiated on the thermostat and the automated schedule learning may be used to update the pre-existing schedule based on users' interactions with the thermostat. The preexisting HVAC schedules may be stored on a device or received from a social networking service or another online service that includes shared HVAC schedules.
Abstract:
A thermostat user interface for a network-connected thermostat is described. The thermostat includes a frustum-shaped shell body having a circular cross-section and a sidewall extending between first and second ends, the second end being user-facing when the thermostat is wall-mounted; a circular rotatable ring being user rotatable for adjusting a setting of the thermostat; and a circular cover including a clear circular center portion surrounded by a painted outer portion. The clear circular center portion permits a corresponding circular portion of a non-circular dot-matrix color display element to be visible through the circular cover and the painted outer portion masks a remaining portion of the non-circular dot-matrix color display element so as to create a circular graphical user interface.