Abstract:
A method for changing reflectance or resistance of a region in an optoelectronic memory device. Changing the reflectance of the region includes sending an electric current through the region to cause a reflectance change in the region. Changing the resistance of the region includes: projecting a laser beam at a first beam intensity on the region, resulting in the region changing from a first to a second different resistance value; electrically reading the second resistance value during which an optical signal carried by the laser beam has a first digital value; after electrically reading the second resistance value, the laser beam is projected at a second beam intensity on the region resulting in the region changing from the second to the first resistance value; and electrically reading the first resistance value of the region while the laser beam is being projected on the region at the second beam intensity.
Abstract:
The present invention provides a 3D via capacitor and a method for forming the same. The capacitor includes an insulating layer on a substrate. The insulating layer has a via having sidewalls and a bottom. A first electrode overlies the sidewalls and at least a portion of the bottom of the via. A first high-k dielectric material layer overlies the first electrode. A first conductive plate is over the first high-k dielectric material layer. A second high-k dielectric material layer overlies the first conductive plate and leaves a remaining portion of the via unfilled. A second electrode is formed in the remaining portion of the via. The first conductive plate is substantially parallel to the first electrode and is not in contact with the first and second electrodes. An array of such 3D via capacitors is also provided.
Abstract:
Moisture detection and ingression monitoring systems and methods of manufacture are provided. The moisture detection structure includes chip edge sealing structures including at least one electrode forming a capacitor structured to detect moisture ingress within an integrated circuit. The at least one electrode and a second electrode of the capacitor is biased to ground and to a moisture detection circuit or vice versa, respectively.
Abstract:
Moisture detection and ingression monitoring systems and methods of manufacture are provided. The moisture detection structure includes chip edge sealing structures including at least one electrode forming a capacitor structured to detect moisture ingress within an integrated circuit. The at least one electrode and a second electrode of the capacitor is biased to ground and to a moisture detection circuit or vice versa, respectively.
Abstract:
An EM testing method includes forcing electrical current through EM monitor wiring arranged in close proximity to the perimeter of the TSV and measuring an electrical resistance drop across the EM monitor wiring. The method may further include determining if an electrical short exists between the EM monitor wiring and the TSV from the measured electrical resistance. The method may further include determining if an early electrical open or resistance increase exists within the EM monitoring wiring due to TSV induced proximity effect.
Abstract:
A structure and a method. The structure includes a semiconductor substrate; a stack of wiring levels from a first wiring level to a last wiring level, the first wiring level closest to the semiconductor substrate and the last wiring level furthest from the semiconductor substrate, the stack of wiring levels including an intermediate wiring level between the first wiring level and the last wiring level; active devices contained in the semiconductor substrate and the first wiring level, each wiring level of the stack of wiring levels comprising a dielectric layer containing electrically conductive wire; a trench extending from the intermediate wiring level, through the first wiring level into the semiconductor substrate; and a chemical agent filling the trench, portions of at least one wiring level of the stack of wiring levels not chemically inert to the chemical agent or a reaction product of the chemical agent.
Abstract:
Stress generation free thru-silicon-via structures with improved performance and reliability and methods of manufacture are provided. The method includes forming a first conductive diffusion barrier liner on an insulator layer within a thru-silicon-via of a wafer material. The method further includes forming a stress absorption layer on the first conductive diffusion barrier. The method further includes forming a second conductive diffusion barrier on the stress absorption layer. The method further includes forming a copper plate on the second conductive diffusion barrier.
Abstract:
A three-dimensional (3-D) integrated circuit wiring including a plurality of stacked dielectric levels formed on a substrate includes a plurality of non-contiguous dummy walls patterned in a corresponding dielectric level around a circuit wire keep out zone (KOZ). The non-contiguous dummy walls are formed in the circuit wire KOZ and have an outer side and an opposing inner side that extend along a first direction to define a length. A circuit wire segment is located at a first metal level and a second circuit wire segment is located at a second metal level different from the first metal level. The first and second metal levels are located adjacent the inner side of at least one non-contiguous dummy wall.
Abstract:
Disclosed are methods for forming a thin film resistor and terminal bond pad simultaneously. A method includes simultaneously forming a terminal bond pad on a terminal wire and a thin film resistor on two other wires.
Abstract:
A structure, such as a wafer, chip, IC, design structure, etc., includes a through silicon via (TSV) and an electromigration (EM) monitor. The TSV extends completely through a semiconductor chip and the EM monitor includes a plurality of EM wires proximately arranged about the TSV perimeter. An EM testing method includes forcing electrical current through EM monitor wiring arranged in close proximity to the perimeter of the TSV, measuring an electrical resistance drop across the EM monitor wiring, determining if an electrical short exists between the EM monitor wiring and the TSV from the measured electrical resistance, and/or determining if an early electrical open or resistance increase exists within the EM monitoring wiring due to TSV induced proximity effect.