Abstract:
The present invention provides a semiconductor device, having: a semiconductor substrate; a first electrode formed over the semiconductor substrate; a first insulation film covering the first electrode and having an aperture for exposing a part of the first electrode; a first conductive film formed on a part of the first insulation film and the first electrode inside the aperture; an isolation region placed inside the aperture; and a second conductive film formed on the first conductive film and the isolation region.
Abstract:
A tunable filter has a plurality of variable capacitors and a plurality of inductor elements, each being formed on a common substrate, a filter circuit formed by using at least a portion of the plurality of variable capacitors and a portion of the plurality of inductor elements, a monitor circuit formed by using at least a portion of the plurality of variable capacitors and a portion of the plurality of inductor elements, a detecting circuit which detects a prescribed circuit constant of the monitor circuit, a storage which stores information relating to a reference circuit constant of the monitor circuit, and a capacitance control circuit which controls capacitance of the variable capacitors in the monitor circuit and capacitance of the variable capacitors in the filter circuit, based on a result detected by the detecting circuit and information stored in the storage.
Abstract:
A thin film piezoelectric actuator comprises a driving part at least one end of which is supported by an anchor portion. The driving part includes: a piezoelectric film, a first lower electrode provided under a first region of the piezoelectric film, a second lower electrode provided under a second region different from the first region of the piezoelectric film, a first upper electrode provided opposite to the first lower electrode on the piezoelectric film, a second upper electrode provided opposite to the second lower electrode on the piezoelectric film, a first connection part that electrically connects the first lower electrode and the second upper electrode via a first via hole formed in the piezoelectric film, and a second connection part that electrically connects the second lower electrode and the first upper electrode via a second via hole formed in the piezoelectric film.
Abstract:
A method of forming buried wiring, includes the steps of forming an insulating layer having a trench on a semiconductor substrate; forming a conductive layer mainly composed of copper on the insulating layer in such a manner that the trench is filled with the conductive layer; removing an oxide layer generated in a surface of the conductive layer by oxidation; forming a cap layer made of a material having less mechanical strength than the oxide layer, on the conductive layer; and removing the cap layer and a part of the conductive layer by chemical mechanical polishing in such a manner that the conductive layer is left in the trench.
Abstract:
An infrared detection element having a single-crystalline base layer 3 with a thickness of 50 nm to 10 &mgr;m having a principal surface, a first electrode layer 4 formed on the principal surface of the single-crystalline base layer 3, a ferroelectric layer 5 which is formed on the first electrode layer 4 and is composed of a single-crystalline layer or a unidirectionally oriented layer. Distortion of the single-crystalline layer or a unidirectionally oriented layer in a surface parallel to the principal surface of the single-crystalline base layer 3 is elastically constrained by the single-crystalline base layer 3. The infrared detection element further has a second electrode layer 6 formed on the ferroelectric layer 5. An amount of charge varies with changes in temperature caused by irradiation of infrared light to the ferroelectric layer 5.
Abstract:
A method of manufacturing an epitaxially-strained lattice film of an oxide, in which epitaxially-strained lattices having a good crystalline property are formed by applying RF power to a substrate holder and irradiating positive ions having a moderate energy while preventing damage to the strained lattice film to be stacked by oxygen negative ions. This method simultaneously overcomes both the problem of damage to the film by irradiation of oxygen negative ions, which is peculiar to sputtering of oxides, and the problem of failure to strain due to relaxation of the strain during deposition.
Abstract:
A carbon film is formed over an insulating film and a contact hole is defined therein by patterning. Copper is formed over an entire surface including the contact hole and polished by chemical mechanical polishing. The polishing of the copper is terminated with the carbon film as an etching stopper thereby to allow the copper to remain in the contact hole alone, whereby an embedded interconnection made up of the copper is formed by a damascene method.
Abstract:
A method for forming an interconnection in a semiconductor element includes a process for forming a groove on an underlying substrate so as to correspond to the designed pattern of the interconnection. An underlayer for improving crystalline orientation of the interconnection is formed on the underlying substrate having the groove. A thin film of interconnection material is formed in the groove and a heattreatment process is carried out to ensure that the groove is filled with the thin film of the interconnection material. Formation of the interconnection is completed by polishing the surface of the thin film by a predetermined quantity.
Abstract:
A thin film capacitor including a first electrode having on its surface a (100) face of cubic system or a (001) face of tetragonal system, a dielectric thin film epitaxially grown on the first electrode and exhibiting a crystal structure which inherently belongs to a perovskite structure of cubic system, and a second electrode formed on the dielectric thin film. Further, the dielectric thin film meets the following relationship V/V.sub.0 .gtoreq.1.01 where a unit lattice volume of true perovskite crystal structure belonging to the cubic system (lattice constant a.sub.0) is represented by V.sub.0 =a.sub.0.sup.3, and a unit lattice volume (lattice constant a=b.noteq.c) which is strained toward a tetragonal system after the epitaxial growth is represented by V=a.sup.2 c, and also meets the following relationship c/a.gtoreq.1.01 where c/a represents a ratio between a lattice constant "c" in the direction thicknesswise of the film and a lattice constant "a" in the direction parallel with a plane of the film.
Abstract:
A semiconductor device in which an SiO.sub.2 film and a first wiring layer are arranged in this order on a GaAs substrate. A capacitor is formed on the first wiring layer. The capacitor includes a lower electrode which has a multi-layer structure consisting of a Ti layer, an Mo layer, and a Pt layer in this order from underside. The capacitor also includes a dielectric film made of strontium titanate. The capacitor further includes an upper electrode which has a multi-layer structure consisting of a WN.sub.x layer (120 um) and a W layer (300 nm) in this order from underside. That surface of the upper electrode, which is in contact with the dielectric film, is defined by the tungsten nitride layer.