Abstract:
Retroreflective articles are provided in the form of garments, fibers and filaments made with retroreflective elements that each include a solid spherical core (110) with an outer core surface, the outer core surface (115). providing a first interface; a first complete concentric optical interference layer (120) having an inner surface overlying the outer core surface (115) and an outer surface (125), the outer surface of the first complete concentric optical interference layer providing a second interface. In some embodiments, the retroreflective elements each include a second complete concentric optical interference layer having an inner surface overlying the outer surface of the first complete concentric optical interference layer and an outer surface, the outer surface of the second complete concentric optical interference layer providing a third interface. In other embodiments, the retroreflective elements each further include a third complete concentric optical interference layer having an inner surface overlying the outer surface of the second complete concentric optical interference layer and an outer surface, the outer surface of the third complete concentric optical interference layer providing a fourth interface. The garments include a surface having a plurality of the foregoing retroreflective elements disposed on the surface. The fibers include an elongate fibrous body having a plurality of the retroreflective elements adhered to the fibrous body. The retroreflective filaments each include a hollow, transparent, tubular member having a plurality of the retroreflective elements contained within the tubular member.
Abstract:
Retroreflective elements and articles that include such elements. The retroreflective elements (100) include a solid spherical core (110) having an outer surface. A first complete concentric optical interference layer (112) overlays the outer surface of the core providing a first interface between the core and the first optical interference layer, and a second complete concentric optical interference layer (122) overlays the first optical interference layer to provide a second interface between the first optical interference layer and the second optical interference layer. In some embodiments, a third complete concentric optical interference layer overlays the second optical interference layer to provide a third interface between the second optical interference layer and the third optical interference layer. The retroreflective articles include a substrate having a first major surface and a second major surface with a plurality of the retroreflective elements affixed along the first major surface of the substrate.
Abstract:
Presently described are retroreflective articles, such as pavement markings, that comprise transparent microspheres partially embedded in a (e.g., polymeric) binder. Also described are (e.g., glass-ceramic) microspheres, methods of making microspheres, as well as compositions of glass materials and compositions of glass-ceramic materials. The microspheres generally comprise lanthanide series oxide(s), titanium oxide (TiO2), and optionally zirconium oxide (ZrO2).
Abstract:
An LED extractor has an input surface adapted to optically couple to an emitting surface of an LED die, and is composed of a glass (including a glass-ceramic) material whose refractive index is at least 2, or at least 2.2.
Abstract:
An optical waveguide including a core having silica, Al, a non-fluorescent rare-earth ion, Ge, Er, and Tm. The non-fluorescent rare-earth ion may be La. Exemplary compositions concentrations are Er is from 15 ppm to 3000 ppm, Al is from 0.5 mol % to 12 mol %, La is less than or equal to 2 mol %, Tm is from 15 ppm to 10,000 ppm; and the Ge is less than or equal to 15 mol %. The core may further include F. An exemplary concentration of F is less than or equal to 6 anion mol %.
Abstract:
Transparent solid, fused microspheres are provided. In one embodiment, the microspheres contain alumina, zirconia, and silica in a total content of at least about 70% by weight, based on the total weight of the solid, fused microspheres, wherein the total content of alumina and zirconia is greater than the content of silica, and further wherein the microspheres have an index of refraction of at least about 1.6 and are useful as lens elements.
Abstract:
Encapsulated electroluminescent phosphor particles and a method of making same. Each phosphor particle is encapsulated by a substantially transparent aluminum oxide-based multiple oxide coating. The encapsulated phosphors exhibit high initial luminescent brightness and high resistance to humidity-accelerated decay of luminescent brightness. The aluminum oxide-based coating provides reduced sensitivity to chemical degradation caused by exposure to condensed moisture or otherwise liquid water. The coating comprises the aluminum oxide and at least one other metal oxide.
Abstract:
Encapsulated electroluminescent phosphor particles and method for making same. The phosphor particles are encapsulated in a very thin oxide layer to protect them from aging due to moisture intrusion. The particles are encapsulated via a vapor phase hydrolysis reaction of oxide precursor materials at a temperature of between about 25.degree. C. and about 170.degree. C., preferably between about 100.degree. C. and about 150.degree. C. The resultant encapsulated particles exhibit a surprising combination of high initial luminescent brightness and high resistance to humidity-accelerated brightness decay.
Abstract:
Security laminates and articles wherein the security laminate includes a first substrate having a first major surface and a second major surface; a plurality of retroreflective elements affixed along the first major surface of the substrate, the retroreflective elements including a solid spherical core comprising an outer core surface, the outer core surface providing a first interface; a first complete concentric optical interference layer having an inner surface overlying core surface and an outer surface, the outer surface of the first complete concentric optical interference layer providing a second interface; a second complete concentric optical interference having an inner surface overlying the outer surface of the first complete concentric optical interference layer and an outer surface, the outer surface of the second complete concentric optical interference layer providing a third interface; the security laminate is retroreflective. Security articles include the foregoing security laminate affixed to a major surface of a second substrate.
Abstract:
Presently described are retroreflective articles, such as pavement markings, that comprise transparent microspheres partially embedded in a (e.g., polymeric) binder. Also described are (e.g., glass-ceramic) microspheres, methods of making microspheres, as well as compositions of glass materials and compositions of glass-ceramic materials. The microspheres generally comprise lanthanide series oxide(s), titanium oxide (TiO2), and optionally zirconium oxide (ZrO2).