摘要:
Within a first of a pair of methods for forming a memory cell structure there is employed a sacrificial spacer layer formed adjacent a capacitor structure and subsequently stripped therefrom to provide an air gap void interposed between a bitline stud layer and the capacitor structure. Within a second of the pair of methods for forming a memory cell structure there is employed a topographically variable thickness masking layer as a self aligned mask layer for forming a patterned capacitor plate layer from a topographic blanket capacitor plate layer. The methods provide for readily forming the memory cell structure with enhanced performance.
摘要:
A structure with bit lines and capacitors for a semi-conductor memory device is formed by the following steps. Form a gate oxide layer on a doped silicon semiconductor substrate. Form gate electrode stacks juxtaposed with conductive plugs over the gate oxide layer, the conductive plugs being separated by a first dielectric material in a direction oriented transversely of the gate electrode stacks. Form a first interpolysilicon layer above the conductive plugs. Form bit-lines in the first interpolysilicon layer above the first dielectric material. Form a capacitor above a plug and between a pair of the bit-lines.
摘要:
A new method and structure is provided for the simultaneous creation of inductive and capacitive components in a monolithic substrate. The invention provides a method and structure whereby a vertical spiral inductor is created on the surface of a substrate. Multiple capacitors are created inside the coils of the vertical spiral conductor. A base layer of dielectric is deposited over the surface of a semiconductor substrate, contact plugs are provided in the base layer of dielectric. Multiple layers of dielectric are deposited over the surface of the base layer, layers of coils are created in the multiple layers of dielectric. Vias are provided in the layer of dielectric to interconnect overlying coils of the spiral inductor. An etch stop layer is deposited on the surface of the upper layer of dielectric. At least two openings are etched in the multiple layers of dielectric, these at least two openings are surrounded by the coils of the spiral inductor and align with the contact plugs provided in the base layers. Spacers are formed on the sidewalls of the openings, the bottom electrode layer, dielectric layer and top electrode layer of the at least two capacitors are deposited over the spacers. The openings are filled with a conductive material, the surface of the conductive material is polished down to the surface of the etch stop.
摘要:
A structure with bit lines and capacitors for a semiconductor memory device is formed by the following steps. Form a gate oxide layer on a doped silicon semiconductor substrate. Form gate electrode stacks juxtaposed with conductive plugs over the gate oxide layer, the conductive plugs being separated by a first dielectric material in a direction oriented transversely of the gate electrode stacks. Form a first interpolysilicon layer above the conductive plugs. Form bit-lines in the first interpolysilicon layer above the first dielectric material. Form a capacitor above a plug and between a pair of the bit-lines.
摘要:
A voltage limiting isolation circuit for pairs of bit lines within a row of DRAM cells to reduce noise coupling will selectively connect and disconnect the portions of a primary and a complementary bit lines, onto which DRAM cells are attached, from the portions of the primary and the complementary bit lines, onto which latching sense amplifier and pre-charge and equalization circuit are attached. The voltage limiting bit line isolation circuit has two sets of serially connected N-type MOS transistors and first P-type MOS transistors placed on the primary bit line and the complementary bit line. Isolation voltage control circuits will provide voltages to the gates of the N-type MOS transistors and P-type MOS transistors to activate and deactivate the voltage limiting isolation control circuit. During a read cycle the latching sense amplifier will sense and amplify the charge from a selected cell and begin to force the first and second portions of the primary and complementary bit lines to a voltage level that is either that of the power supply voltage source or the ground. As the voltage level of the first and second portions of the primary and complementary bit lines approaches to within one threshold voltage level of the MOS transistors, the voltage limiting bit line isolation circuit will deactivate. The first portions of the primary and complementary bit lines will swing to a lower voltage level thus lowering coupled noise to adjacent bit lines.
摘要:
A semiconductor device is prepared by an annealing process to interconnect at least two components of the device by a conductor line surrounded by an insulator material. The annealing process results in formation of residual stresses within the conductor line and the insulator material. A notch is designed in the layout on a selective portion of the mask for patterning conductor line. The existence of a shape of notch on the selective portion generates extra stress components within the conductor line than if without the existence of the notch. The position of the notch is selected so that the extra stress components substantially counteract the residual stresses, thereby causing a net reduction in the residual stresses. The reduction in the residual stresses results in a corresponding mechanical stress migration and therefore improvement in the reliability of the device.
摘要:
There is provided a method of manufacturing a semiconductor device, including the following steps: flowing a first precursor gas to the semiconductor substrate within a ALD chamber to form a first discrete monolayer on the semiconductor substrate; flowing an inert purge gas to the semiconductor substrate within the ALD chamber; flowing a second precursor gas to the ALD chamber to react with the first precursor gas which has formed the first monolayer, thereby forming a first discrete compound monolayer; and flowing an inert purge gas; forming a first dielectric layer to cover the discrete compound monolayer; forming a second third monolayer above first dielectric layer; and forming a second discrete compound monolayer; and forming a second dielectric layer to cover the second discrete compound monolayer above the first dielectric layer. There is also provided a semiconductor device formed by the ALD method.
摘要:
A method for forming a semiconductor device is disclosed. A substrate including a gate dielectric layer and a gate electrode layer sequentially formed thereon is provided. An offset spacer is formed on sidewalls of the gate dielectric layer and the gate electrode layer. A carbon spacer is formed on a sidewall of the offset spacer, and the carbon spacer is then removed. The substrate is implanted to form a lightly doped region using the gate electrode layer and the offset spacer as a mask. The method may also include providing a substrate having a gate dielectric layer and a gate electrode layer sequentially formed thereon. A liner layer is formed on sidewalls of the gate electrode layer and on the substrate. A carbon spacer is formed on a portion of the liner layer adjacent the sidewall of the gate electrode layer. A main spacer is formed on a sidewall of the carbon spacer. The carbon spacer is removed to form an opening between the liner layer and the main spacer. The opening is sealed by a sealing layer to form an air gap.
摘要:
A vertical resistor. A substrate includes a trench filled by an isolation layer. A first doped-type region and a second doped-type region are formed on both sides of the trench. The first doped-type region receives a control bias, the second doped-type region receives a reference bias, and a resistance between the second doped-type region and the substrate is adjusted in response to a voltage difference between the control bias and the reference bias.
摘要:
There is provided a method of manufacturing a semiconductor device, including the following steps: flowing a first precursor gas to the semiconductor substrate within the ALD chamber to form a first discrete monolayer on the semiconductor substrate; flowing an inert purge gas to the semiconductor substrate within the ALD chamber; flowing a second precursor gas to the ALD chamber to react with the first precursor gas which has formed the first monolayer, thereby forming a first discrete compound monolayer; and flowing an inert purge gas; and forming a second discrete compound monolayer above the semiconductor substrate by the same process as that for forming the first discrete compound monolayer. There is also provided a semiconductor device in which the charge trapping layer is a dielectric layer containing the first and second discrete compound monolayers formed by the ALD method.