Abstract:
Disclosed is a flash memory device and programming method that includes; receiving buffer data and determining between a high-speed mode and a reliability mode for buffer data, and upon determining the reliability mode storing the buffer data in a first buffer region, and upon determining the high-speed mode storing the buffer data in a second buffer region. The memory cell array of the flash memory including a main region and a separately designated buffer region divided into the first buffer region and second buffer region.
Abstract:
A nonvolatile memory device includes a flag cell configured to store flag information, a plurality of dummy cells adjacent to the flag cell, and program control logic configured to control a program operation on the flag cell and a dummy program operation on the plurality of dummy cells. When the program operation on the flag cell is performed, the program control logic performs the dummy program operation on at least one of the plurality of dummy cells.
Abstract:
A three-dimensional (3D) flash memory includes a first dummy word line disposed between a ground select line and a lowermost main word line, and a second dummy word line of different word line configuration disposed between a string select line and an upper most main word line.
Abstract:
A semiconductor package includes a package body, a fan-in-chip structure (FICS) in the package body, a first redistribution structure, and a second redistribution structure. The FICS includes a first chip having a front surface and a rear surface, a bridge wiring structure including a bridge wiring layer on the rear surface of the first chip, and a bridge pad electrically connected to the bridge wiring layer. The first redistribution structure is on a bottom surface of the package body and the front surface of the first chip and includes a first redistribution element. The second redistribution structure is on a top surface of the package body and the rear surface of the first chip and includes a second redistribution element electrically connected to the bridge wiring structure.
Abstract:
A recyclable ceramic catalyst filter, a filtering system including the same, and a method of managing the filtering system are provided. The ceramic catalyst filter has a monolithic structure including a first surface which blocks a first material; and a second surface which removes a second material that passed through the first surface, where the second surface is activated and operates as a catalyst layer which removes the second material in response to energy supplied to the second surface.
Abstract:
An air purification device includes a reactor having a hollow shape and extending in one direction, a discharge plasma generator comprising a first electrode disposed on an outer wall of the reactor and a second electrode disposed inside the reactor, where the discharge plasma generator is configured to generate a discharge plasma in a discharge region, a plurality of dielectric particles disposed on a packed-bed of the reactor, a liquid supplier which supplies a liquid into the reactor, and a liquid recoverer which recovers the liquid discharged from the reactor.
Abstract:
Provided herein is a lithium battery including: a cathode including a cathode active material; an anode including an anode active material; an electrolyte between the cathode and the anode; and a separator impregnated with the electrolyte, wherein the separator includes cellulose nanofibers, and wherein a differential scanning calorimetry (DSC) thermogram of the separator evinces an exothermic reaction peak, represented by a differential value (dH/dT), at a temperature in a range of about 150° C. to about 200° C.
Abstract:
Provided herein are a porous film, a separator including the same, an electrochemical device including the separator, and a method of preparing the porous film. The porous film includes first cellulose nanofibers which is impregnated with a carbonate-based solvent-containing electrolyte solution and has a reaction heat of 150 J/g or less at a temperature ranging from about 30° C. to about 300° C., as measured by differential scanning calorimetry (DSC).
Abstract:
A porous film comprising a Lewis base and nanofibers comprising cellulose or a derivative thereof, a separator comprising the porous film, and an electrochemical device comprising the separator or porous film are provided. The electrochemical device comprising the separator comprising the porous film may have improved thermal stability, and thus deterioration of the electrochemical device may be inhibited.
Abstract:
An organic light emitting diode device includes an organic light emitting display panel and a circular polarizing plate disposed on the organic light emitting display panel and including a polarizer and a compensation film, where a retardation of the compensation film in a first direction is determined based on a retardation of the organic light emitting display panel in the first direction.