摘要:
A method is disclosed for performing HARQ buffer management. The HARQ buffer management method is a new approach to buffer overflow management that allows the mobile station, rather than the base station, to control the size of its buffer. The HARQ buffer management reports buffer size, buffer occupancy status, and buffer overflow to the base station, to facilitate efficient communication between the base station and the mobile station.
摘要:
Various embodiments include devices, methods, computer-readable media and system configurations for reference signal generation and resource allocation. In various embodiments, a wireless communication device may include a control module, which may be operated by a processor and configured to transmit to a user equipment (“UE”) device, over a wireless communication interface, a parameter specific to the UE device; wherein the parameter is usable by the eNB to generate a user equipment-specific reference signal (“UE-RS”) to be sent to the UE device. The parameter may be usable by the UE device to identify the UE-RS to facilitate demodulation of multiple-input, multiple-output communications. In various embodiments, a control module may be configured to store, in memory, priority rules, and to determine a UE-RS resource allocated to another UE device based on a UE-RS resource allocated to the UE device and the priority rules.
摘要:
An apparatus includes a processor a channel state information (CSI) module operative on the processor to evaluate channel state information for a multiplicity of transmission points and to allocate a selection of channel state information reference signals (CSI-RS) to an uplink sub-frame allotted for transmitting channel quality/precoding matrix index/rank indicator (CQI/PMI/RI) information to a transmission point. The apparatus may further include a wireless transceiver operative to transmit the selection of CSI-RS in the uplink sub-frame to the transmission point in a wireless network, and receive information from the transmission point in response to the CSI-RS and a digital display operative to present the information received from the transmission point.
摘要:
Apparatuses and methods for channel state information reference signal (CSI-RS) configuration in distributed remote radio head (RRH) systems are described. A transmission point selection module can receive a user equipment (UE) signal via a transmission point from a plurality of transmission points sharing a single cell identification. A downlink transmission point can be selected based on the UE signal. The UE can then be configured to report CSI-RS measurements for the selected downlink transmission point.
摘要:
Embodiments allow an eNBs and a target UE to both calculate which resource block groups (RBGs) to use to transmit data. Because the RBGs that will contain information of interest can be pre-calculated, there is no need to receive and store all RBGs in the transmitted signal before decoding the signal and identifying which RBGs are of interest to the recipient. This allows receivers to buffer and/or store only those RBGs that will contain received information and discard others. The amount of information that needs to be stored and/or buffered thus is less and can result in receivers with less memory and, hence, lower cost. In order to calculate which RBGs are to be used to transmit and/or receive information, a logical RBG index is first calculated and the logical RBG index is mapped to a physical RBG index.
摘要:
A system and method for using carrier aggregation and enhanced inter-cell interference coordination in carrier scheduling is disclosed. The method comprises scheduling a communication of control channel information from at least one low power node on a physical downlink control channel (PDCCH) over at least one of a first low power component carrier and a second low power component carrier. A sub-frame having a lowest level of interference caused by a corresponding macro component carrier is identified at each corresponding subframe of the component carriers. The identified sub-frame is selected to transmit the control channel information on the PDCCH from the at least one low power node to a mobile wireless device.
摘要:
An apparatus includes a processor a channel state information (CSI) module operative on the processor to evaluate channel state information for a multiplicity of transmission points and to allocate a selection of channel state information reference signals (CSI-RS) to an uplink sub-frame allotted for transmitting channel quality/precoding matrix index/rank indicator (CQI/PMI/RI) information to a transmission point. The apparatus may further include a wireless transceiver operative to transmit the selection of CSI-RS in the uplink sub-frame to the transmission point in a wireless network, and receive information from the transmission point in response to the CSI-RS and a digital display operative to present the information received from the transmission point.
摘要:
Apparatuses and methods for channel state information reference signal (CSI-RS) configuration in distributed remote radio head (RRH) systems are described. A transmission point selection module can receive a user equipment (UE) signal via a transmission point from a plurality of transmission points sharing a single cell identification. A downlink transmission point can be selected based on the UE signal. The UE can then be configured to report CSI-RS measurements for the selected downlink transmission point.
摘要:
A system and a method for a mobility measurement in a wireless network comprises determining at a wireless terminal a channel power estimation ES for a carrier signal based on Channel State Information Reference Signals (CSI-RS), and determining at the wireless terminal a noise plus interference I+N for the carrier signal based on a muted CSI-RS. The carrier signal is an additional carrier without the presence of a Cell-specific Reference Signal. In one exemplary embodiment, the periodicity of the CSI-RS is selected to be 1, 2 or 3 subframes.
摘要:
An apparatus and method of allowing user equipment (UE) to transmit information directly with other user equipment, using a device-to-device (D2D) mode is disclosed herein. A D2D UE (dUE1) that wishes so communicate to another UE (dUE2) in D2D mode makes various communications requests to an Evolved Node B (eNB), which can facilitate the connection between dUE1 and dUE2 by having the dUE1 measure the signals from dUE2 to help establish a D2D connection between the dUE1 and the dUE2.