Abstract:
The present disclosure relates to the field of molecular biology and more specifically to methods for capturing, amplifying and sequencing target polynucleotides on a solid surface.
Abstract:
Systems and methods for conducting designated reactions that include a fluidic network having a sample channel, a reaction chamber, and a reservoir. The sample channel is in flow communication with a sample port. The system also includes a rotary valve that has a flow channel and is configured to rotate between first and second valve positions. The flow channel fluidically couples the reaction chamber and the sample channel when the rotary valve is in the first valve position and fluidically couples the reservoir and the reaction chamber when the rotary valve is in the second valve position. A pump assembly induces a flow of a biological sample toward the reaction chamber when the rotary valve is in the first valve position and induces a flow of a reaction component from the reservoir toward the reaction chamber when the rotary valve is in the second valve position.
Abstract:
Systems and methods for conducting designated reactions that include a fluidic network having a sample channel, a reaction chamber, and a reservoir. The sample channel is in flow communication with a sample port. The system also includes a rotary valve that has a flow channel and is configured to rotate between first and second valve positions. The flow channel fluidically couples the reaction chamber and the sample channel when the rotary valve is in the first valve position and fluidically couples the reservoir and the reaction chamber when the rotary valve is in the second valve position. A pump assembly induces a flow of a biological sample toward the reaction chamber when the rotary valve is in the first valve position and induces a flow of a reaction component from the reservoir toward the reaction chamber when the rotary valve is in the second valve position.
Abstract:
Systems and methods for conducting designated reactions utilizing a base instrument and a removable cartridge. The removable cartridge includes a fluidic network that receives and fluidically directs a biological sample to conduct the designated reactions. The removable cartridge also includes a flow-control valve that is operably coupled to the fluidic network and is movable relative to the fluidic network to control flow of the biological sample therethrough. The removable cartridge is configured to separably engage a base instrument. The base instrument includes a valve actuator that engages the flow-control valve of the removable cartridge. A detection assembly held by at least one of the removable cartridge or the base instrument may be used to detect the designated reactions.
Abstract:
A method for enriching a target nucleic acid comprising providing an endonuclease system having a crRNA or a derivative thereof, and a Cas protein or a variant thereof. The crRNA or the derivative thereof contains a target-specific nucleotide region substantially complementary to a region of the target nucleic acid; contacting the target nucleic acid with the endonuclease system to form a complex; and separating the complex and thereby enriching for the target nucleic acid.
Abstract:
The disclosed embodiments concern methods, apparatus, systems and computer program products for determining sequences of interest using unique molecular index (UMI) sequences that are uniquely associable with individual polynucleotide fragments, including sequences with low allele frequencies and long sequence length. In some implementations, the UMIs include both physical UMIs and virtual UMIs. In some implementations, the unique molecular index sequences include non-random sequences. System, apparatus, and computer program products are also provided for determining a sequence of interest implementing the methods disclosed.
Abstract:
Provided herein is a droplet actuator including (a) first and second substrates separated by a droplet-operations gap, the first and second substrates including respective hydrophobic surfaces that face the droplet-operations gap; (b) a plurality of electrodes coupled to at least one of the first substrate and the second substrate, the electrodes arranged along the droplet-operations gap to control movement of a droplet along the hydrophobic surfaces within the droplet-operations gap; and (c) a hydrophilic or variegated-hydrophilic surface exposed to the droplet-operations gap, the hydrophilic or variegated-hydrophilic surface being positioned to contact the droplet when the droplet is at a select position within the droplet-operations gap.