摘要:
An NMOS transistor may be formed with a biaxially strained silicon upper layer having a thickness of greater than 500 Angstroms. The resulting NMOS transistor may have good performance and may exhibit reduced self-heating. A PMOS transistor may be formed with both a biaxially and uniaxially strained silicon germanium layer. A source substrate bias applied to both NMOS and PMOS transistors can enhance their performance.
摘要:
A transistor may be formed of different layers of silicon germanium, a lowest layer having a graded germanium concentration and upper layers having constant germanium concentrations such that the lowest layer is of the form Si1-xGex. The highest layer may be of the form Si1-yGey on the PMOS side. A source and drain may be formed of epitaxial silicon germanium of the form Si1-zGez on the PMOS side. In some embodiments, x is greater than y and z is greater than x in the PMOS device. Thus, a PMOS device may be formed with both uniaxial compressive stress in the channel direction and in-plane biaxial compressive stress. This combination of stress may result in higher mobility and increased device performance in some cases.
摘要翻译:晶体管可以由不同层的硅锗形成,具有梯度锗浓度的最低层和具有恒定锗浓度的上层,使得最底层具有Si 1-x Ge Ge > x SUB>。 在PMOS侧,最高层可以是Si 1-y N y O y的形式。 源极和漏极可以由PMOS侧的Si 1-z N z z z的外延硅锗形成。 在一些实施例中,在PMOS器件中,x大于y且z大于x。 因此,PMOS器件可以在通道方向上具有单轴压应力和面内双轴压应力。 在某些情况下,应力的这种组合可能导致较高的移动性和增加的设备性能。
摘要:
A high mobility semiconductor assembly. In one exemplary aspect, the high mobility semiconductor assembly includes a first substrate having a first reference orientation located at a crystal plane location on the first substrate and a second substrate formed on top of the first substrate. The second substrate has a second reference orientation located at a crystal plane location on the second substrate, wherein the first reference orientation is aligned with the second reference orientation. In another exemplary aspect, the second substrate has a second reference orientation located at a crystal plane location on the second substrate, wherein the second substrate is formed over the first substrate with the second reference orientation being offset to the first reference orientation by about 45 degrees.
摘要:
A semiconductor device comprising a semiconductor body having a top surface and laterally opposite sidewalls is formed on an insulating substrate. A gate dielectric layer is formed on the top surface of the semiconductor body and on the laterally opposite sidewalls of the semiconductor body. A gate electrode is formed on the gate dielectric on the top surface of the semiconductor body and is formed adjacent to the gate dielectric on the laterally opposite sidewalls of the semiconductor body. A thin film is then formed adjacent to the semiconductor body wherein the thin film produces a stress in the semiconductor body.
摘要:
The present invention is a CMOS SRAM cell comprising two access devices, each access device comprised of a tri-gate transistor having a single fin; two pull-up devices, each pull-up device comprised of a tri-gate transistor having a single fin; and two pull-down devices, each pull-down device comprised of a tri-gate transistor having multiple fins. A method for manufacturing the CMOS SRAM cell, including the dual fin tri-gate transistor is also provided.
摘要:
A high mobility semiconductor assembly. In one exemplary aspect, the high mobility semiconductor assembly includes a first substrate having a first reference orientation located at a crystal plane location on the first substrate and a second substrate formed on top of the first substrate. The second substrate has a second reference orientation located at a crystal plane location on the second substrate, wherein the first reference orientation is aligned with the second reference orientation. In another exemplary aspect, the second substrate has a second reference orientation located at a crystal plane location on the second substrate, wherein the second substrate is formed over the first substrate with the second reference orientation being offset to the first reference orientation by about 45 degrees.
摘要:
A transistor is described having a source electrode and a drain electrode. The transistor has at least one semiconducting carbon nanotube that is electrically coupled between the source and drain electrodes. The transistor has a gate electrode and dielectric material containing one or more quantum dots between the carbon nanotube and the gate electrode.
摘要:
Embodiments of the invention provide a method for effecting uniform silicon body height for silicon-on-insulator transistor fabrication. For one embodiment, a sacrificial oxide layer is disposed upon a semiconductor substrate. The oxide layer is etched to form a trench. The trench is then filled with a semiconductor material. The semiconductor material is then planarized with the remainder of the oxide layer and the remainder of the oxide layer is then removed. The semiconductor fins thus exposed are of uniform height to within a specified tolerance.
摘要:
A multi-body thickness (MBT) field effect transistor (FET) comprises a silicon body formed on a substrate. The silicon body may comprise a wide section and a narrow section between the wide section and the substrate. The silicon body may comprise more than one pair of a wide section and a narrow section, each pair being located at a different height of the silicon body. The silicon body is surrounded by a gate material on three sides. The substrate may be a bulk silicon substrate or a silicon-on-insulator (SOI) substrate. The MBT-FET combines the advantages of a wide fin device and a narrow fin device.
摘要:
A method for providing halo implants in a tri-gate structure is described. Implantation is performed at two different angels to assure a halo for the top transistor and a halo for the side transistors.