摘要:
A clock distribution network having: a main trunk configured to provide a differential clock signal; a plurality of branches coupled to the main trunk for distributing the differential clock signal to a plurality of circuit elements on the integrated circuit; and a plurality of switches coupling the main trunk to the plurality of branches.
摘要:
A clock distribution network having: a backbone clock signal line configured to provide a differential clock signal; multiple branches coupled to the backbone clock signal line for distributing the differential clock signal to multiple programmable function elements; a first leaf node coupled to a first branch, where the first leaf node is configured to provide the differential clock signal to a first programmable function element; and a second leaf node coupled to a second branch, where the second leaf node is configured to provide a single ended clock signal derived from the differential clock signal to a second programmable function element.
摘要:
Disclosed are methods and structures for preparing data for transmission over a network. In an embodiment consistent with the OSI network model, transmit and receive CRC generators are moved from the link layer to the physical layer, which frees up valuable programmable logic resources when a programmable logic device is employed to perform the functions of the link layer. The CRC generators of the physical layer comply with a plurality of network communication standards.
摘要:
A transmit variable-width interface can be programmed to convert an electronic digital data path that is either 1N, 2N, 4N, or 8N bits wide into a data path that is 2N bits wide, either by serializing bits (4N- or 8N-bit cases), re-clocking bits (2N-bit case), or grouping bits (1N-bit case). A receive variable-width interface can be programmed to convert a data path 2N bits wide into a data path that is 1N, 2N, 4N, or 8N bits wide. The widths of the two variable-width data paths are controlled independently. The variable-width interfaces are coupled between a multi-gigabit transceiver and core logic of a programmable logic device. The incoming and outgoing data paths of the variable-width interfaces have separate clocks signals that are synchronized such that small amounts of skew in these clock signals do not disrupt the operation of the variable-width interfaces.
摘要:
A transmit variable-width interface can be programmed to convert an electronic digital data path that is either 1N, 2N, 4N, or 8N bits wide into a data path that is 2N bits wide, either by serializing bits (4N- or 8N-bit cases), re-clocking bits (2N-bit case), or grouping bits (1N-bit case). A receive variable-width interface can be programmed to convert a data path 2N bits wide into a data path that is 1N, 2N, 4N, or 8N bits wide. The widths of the two variable-width data paths are controlled independently. The variable-width interfaces are coupled between a multi-gigabit transceiver and core logic of a programmable logic device. The incoming and outgoing data paths of the variable-width interfaces have separate clocks signals that are synchronized such that small amounts of skew in these clock signals do not disrupt the operation of the variable-width interfaces.
摘要:
A programmable logic device includes a plurality of logic cells in which logic functions are performed, a plurality of input lines for supplying signals to be processed by the logic cells, a plurality of output lines for receiving signals that have been processed by the logic cells, and a plurality of repeater circuits combining bipolar and CMOS transistor technologies for transferring data from one point in the PLD to another point. Unidirectional repeater circuits transfer data from a first data bus in the PLD to a second data bus in the PLD. Bidirectional repeater circuits maintain signal integrity by transferring data along the length of a single PLD data bus. The bipolar technology in the repeater circuits provides superior speed in data transfer, while the CMOS technology limits power consumption of the repeater circuits.
摘要:
A temperature compensated bandgap voltage reference circuit employs an npn transistor based bypass circuit to maintain a constant collector current within the reference circuit. This bypass circuit draws a nominal current from the bandgap voltage reference circuit. The value of this current is set by a bias circuit responsive to changes in the supply voltage. As the supply voltage changes, the bias circuit varies the conductance of a bypass transistor to draw more or less current and thereby maintain the collector current within the reference circuit constant.
摘要:
Disclosed herein are compositions comprising an isolated cellulose degrading fungus. Also disclosed are culture compositions and bioreactor compositions comprising the cellulose degrading fungus. Further described herein are filtration and extraction devices comprising the cellulose degrading fungus. Still further disclosed are bioprocessing facilities for and methods for producing co-products resulting from one or more bioprocesses of the cellulose degrading fungus.
摘要:
Signal distribution of a regional signal is described. A programmable logic device includes a global signal distribution network, a regional signal distribution network and a regional buffer. The regional buffer has an output coupled at an end of the regional signal distribution network. The regional signal distribution network is coupled to a configurable logic block via an interconnect tile. The regional buffer is coupled to a regional clock capable input/output block. Additionally described is a source synchronous interface for regional signal distribution.
摘要:
Method and apparatus for doubling the throughput rate of data transmission on a logic path comprising providing two latches that alternately receive successive bits of the data stream to be transmitted and a multiplexer having data transmission paths that are alternately clocked by two separate clocks, which clocks are substantially 180 degrees out of phase.