摘要:
A first interlayer insulating film having a second contact hole is formed on a main surface of a semiconductor substrate 1 in a peripheral circuitry. A second plug electrode of the same material as a first plug electrode in a memory cell array is formed in the second contact hole. A pad layer is formed over the second plug electrode and a top surface of the first interlayer insulating film. The pad layer and a capacitor lower electrode are made of the same material. The pad layer is covered with the second interlayer insulating film. A third contact hole is formed at a portion of the second interlayer insulating film located above the pad layer. A first aluminum interconnection layer is formed in the third contact hole. Thereby, a contact can be formed easily between the interconnection layer and the main surface of the semiconductor substrate in the peripheral circuitry of a DRAM, and a manufacturing process can be simplified.
摘要:
Disclosed is a semiconductor memory device in which defects in crystal in a junction region between a capacitor and a source/drain region, and a short channel effect of a transistor can be effectively reduced. The semiconductor memory device includes, on the side of a gate electrode at which the capacitor is connected, a sidewall formed to have a width larger than that of a sidewall on the side of a bit line, and a source/drain region to which the capacitor is connected and which is formed to have a diffusion depth larger than that of the opposite source/drain region. Therefore, the source/drain region effectively prevents defects in crystal from being produced in the junction region between the capacitor and the source/drain region connected to the capacitor and the sidewall effectively reduces the short channel effect.
摘要:
According to a semiconductor device and a method of manufacturing thereof, a sidewall spacer is formed at a sidewall of a contact hole, in a recess portion defined by the sidewall of the contact hole and a buried conductive layer, having a film thickness gradually increasing from a top face corner of an interlayer insulation film to the surface of the buried conductive layer. Therefore, a semiconductor device that can achieve favorable breakdown voltage and anti-leak characteristics between a lower electrode layer and an upper electrode layer forming a capacitor of a DRAM.
摘要:
An object of the invention is to provide a semiconductor device which has a capacitor having good anti-leak characteristics and good breakdown voltage characteristics and is suitable to high integration. Source/drain regions (25) are formed at a surface of a silicon substrate (31). Interlayer insulating films (1) and (3) having contact holes (1a) and (3a), through which a surfaces of the source/drain region is partially exposed, is formed on the surface of silicon substrate (31). Contact holes (1a) and (3a) are filled with plug layer (9a). A capacitor (20) having a highly dielectric film (15) is formed such that it is electrically connected to source/drain region (25) through plug layer (9a). The interlayer insulating film is formed of a two-layer structure including a silicon oxide film (1) and a silicon nitride film (3). Silicon nitride film (3) and plug layer (9a) have the top surfaces flush with each other.
摘要:
An element isolating structure employed for isolating the elements of a semiconductor substrate has an impurity region having a concentration lower than that of a source/drain and a channel stop region, between the source/drain of an MOS transistor formed in an active region, and the channel stop region formed under an LOCOS film.A field shield isolating structure has a low concentrated impurity region between the source/drain of an MOS transistor formed in the active region and the substrate surface region covered by a field shield electrode layer. The low concentrated impurity region improves its junction breakdown voltage in the boundary region with the element isolating region.An improved LOCOS film is formed into an amorphous region on the surface of the substrate by an oblique rotating ion implanting method, and the amorphous region is formed by thermal oxidation. The method suppresses the emergence of a bird's beak.
摘要:
To improve the performance of semiconductor devices. Over an n+-type semiconductor region for source/drain of an n-channel type MISFET and a first gate electrode, and over a p+-type semiconductor region for source/drain of a p-channel type MISFET and a second gate electrode, which are formed over a semiconductor substrate, a metal silicide layer including nickel platinum silicide is formed by a salicide process. After that, a tensile stress film is formed over the whole face of the semiconductor substrate, and then the tensile stress film over the p-channel type MISFET is removed by dry-etching, and, after a compression stress film is formed over the whole face of the semiconductor substrate, the compression stress film over the n-channel type MISFET is removed by dry-etching. The Pt concentration in the metal silicide layer is highest at the surface, and becomes lower as the depth from the surface increases.
摘要:
A method of manufacturing a semiconductor device, including the steps of preparing a silicon substrate which has a main surface whose plane direction is a surface (100); forming an n channel MISFET (Metal Insulator Semiconductor Field Effect Transistor) which has a gate electrode, a source region, a drain region and a channel whose channel length direction is parallel to a crystal orientation of the silicon substrate; and forming NiSi over the gate electrode and NiSi2 over the source region and the drain region at the same steps.
摘要:
There is provided a semiconductor device having a metal silicide layer which can suppress the malfunction and the increase in power consumption of the device. The semiconductor device has a semiconductor substrate containing silicon and having a main surface, first and second impurity diffusion layers formed in the main surface of the semiconductor substrate, a metal silicide formed over the second impurity diffusion layer, and a silicon nitride film and a first interlayer insulation film sequentially stacked over the metal silicide. In the semiconductor device, a contact hole penetrating through the silicon nitride film and the first interlayer insulation film, and reaching the surface of the metal silicide is formed. The thickness of a portion of the metal silicide situated immediately under the contact hole is smaller than the thickness of a portion of the metal silicide situated around the contact hole.
摘要:
To improve the performance of semiconductor devices. Over an n+-type semiconductor region for source/drain of an n-channel type MISFET and a first gate electrode, and over a p+-type semiconductor region for source/drain of a p-channel type MISFET and a second gate electrode, which are formed over a semiconductor substrate, a metal silicide layer including nickel platinum silicide is formed by a salicide process. After that, a tensile stress film is formed over the whole face of the semiconductor substrate, and then the tensile stress film over the p-channel type MISFET is removed by dry-etching, and, after a compression stress film is formed over the whole face of the semiconductor substrate, the compression stress film over the n-channel type MISFET is removed by dry-etching. The Pt concentration in the metal silicide layer is highest at the surface, and becomes lower as the depth from the surface increases.
摘要:
The present invention can prevent occurrence of an off-leak current in the NMISFETs formed over the Si (110) substrate and having a silicided source/drain region. The semiconductor device includes N channel MISFETs (Metal Insulator Semiconductor Field Effect Transistors) which are formed over a semiconductor substrate having a main surface with a (110) plane orientation and have a source region and a drain region at least one of which has thereover nickel silicide or a nickel alloy silicide. Of these NMISFETs, those having a channel width less than 400 nm are laid out so that their channel length direction is parallel to a crystal orientation.