Abstract:
A stiffener assembly for use with testing devices is provided herein. In some embodiments, a stiffener for use with testing devices includes an inner member; an outer member disposed in a predominantly spaced apart relation to the inner member; and a plurality of alignment mechanisms for orienting the inner and outer members with respect to each other, wherein the alignment mechanisms transfer forces applied to a lower surface of the inner member to the outer member and provide the predominant conductive heat transfer passageway between the inner and outer members.
Abstract:
Systems and methods for providing a stack with a guard plane embedded in the stack are disclosed. An electrical apparatus can be made by forming a stack comprising an electrically conductive signal structure, an electrical guard structure, and an electrically insulating structure disposed between the signal structure and the guard structure. The signal structure, insulating structure, and guard structure can be aligned one with another in the stack.
Abstract:
A method of designing and manufacturing a probe card assembly includes prefabricating one or more elements of the probe card assembly to one or more predefined designs. Thereafter, design data regarding a newly designed semiconductor device is received along with data describing the tester and testing algorithms to be used to test the semiconductor device. Using the received data, one or more of the prefabricated elements is selected. Again using the received data, one or more of the selected prefabricated elements is customized. The probe card assembly is then built using the selected and customized elements.
Abstract:
A method and system for designing a probe card from data provided by prospective customers via the Internet is provided. Design specifications are entered into the system by prospective customers and compiled into a database. The collective feasibility of each set of design specifications is determined by an automated computer system and communicated to the prospective customer. If feasible, additional software enables prospective customers to create verification packages according to their respective design specifications. These verification packages further consist of drawing files visually describing the final design and verification files confirming wafer bonding pad data. Verification packages are reviewed and forwarded to an applications engineer after customer approval. An interactive simulation of probe card performance is also provided. Data on probe card performance is incorporated into an overall modeling exercise, which includes not only the probe card, but data on the device(s) under test and wafer, as well as data on automated test equipment.
Abstract:
A probe card cooling assembly for use in a test system includes a package with one or more dies cooled by direct cooling. The cooled package includes one or more dies with active electronic components and at least one coolant port that allows a coolant to enter the high-density package and directly cool the active electronic components of the dies during a testing operation.
Abstract:
Rotating contact elements and methods of fabrication are provided herein. In one embodiment, a rotating contact element includes a tip having a first side configured to contact a device to be tested and an opposing second side; and a plurality of deformed members extending from the second side of the tip and arranged about a central axis thereof, wherein the tip rotates substantially about the central axis upon compression of the plurality of deformed members.
Abstract:
A mechanical support configuration for a probe card of a wafer test system is provided to increase support for a very low flexural strength substrate that supports spring probes. Increased mechanical support is provided by: (1) a frame around the periphery of the substrate having an increased sized horizontal extension over the surface of the substrate; (2) leaf springs with a bend enabling the leaf springs to extend vertically and engage the inner frame closer to the spring probes; (3) an insulating flexible membrane, or load support member machined into the inner frame, to engage the low flexural strength substrate farther away from its edge; (4) a support structure, such as support pins, added to provide support to counteract probe loading near the center of the space transformer substrate; and/or (5) a highly rigid interface tile provided between the probes and a lower flexural strength space transformer substrate.
Abstract:
A system is provided to enable leakage current measurement or parametric tests to be performed with an isolation buffer provided in a channel line. Multiple such isolation buffers are used to connect a single signal channel to multiple lines. Leakage current measurement is provided by providing a buffer bypass element, such as a resistor or transmission gate, between the input and output of each buffer. The buffer bypass element can be used to calibrate buffer delay out of the test system by using TDR measurements to determine the buffer delay based on reflected pulses through the buffer bypass element. Buffer delay can likewise be calibrated out by comparing measurements of a buffered and non-buffered channel line, or by measuring a device having a known delay.
Abstract:
A technique for anchoring carbon nanotube columns to a substrate can include use of a filler material placed onto the surface of the substrate into area between the columns and surrounding a base portion of each of the columns.
Abstract:
Apparatus for terminating a test signal applied to multiple semiconductor loads under test is described—for example apparatus for interfacing a test signal between a tester and a semiconductor device under test (DUT). In some examples, a probe card assembly may include at least one probe substrate each having test probes configured to contact test features of a DUT; a wiring substrate, coupled to the at least one probe substrate, having a connector configured for coupling with a source termination of a tester; a signal path formed on and/or in the wiring substrate and the at least one probe substrate, the signal path having a trace and trace stubs fanning out from the trace, an input of the trace being coupled to the connector and outputs of the trace stubs being coupled to the test probes; and a resistive termination coupled between the trace and at least one potential.