Abstract:
A latency control circuit includes a clock delay configured to output a plurality of serial delay signals obtained by serially delaying an input clock signal with the same intervals, a deviation information generating unit configured to generate a deviation information on the basis of a delay value, which the clock signal undergoes in a chip, and latency information, a clock selector configured to output a plurality of clock selection signals based on the plurality of serial delay signals and the deviation information, a command signal processing unit configured to generate a read signal based on an input command signal, and output a variable delay duplication signal by variably delaying the read signal, and a latency shifter configured to output a latency signal by combining the plurality of clock selection signals with the variable delay duplication signal.
Abstract:
Implementations and techniques for semiconductor light-emitting devices including one or more copper blend I-VII compound semiconductor material barrier layers are generally disclosed.
Abstract:
A method and an apparatus for synchronizing media data and auxiliary data received by a service through a broadcast network or a communication network in a multimedia broadcast service are provided. The method includes receiving regular media data provided for a broadcast service, receiving and storing control information regarding adjunct media data comprising auxiliary data regarding the regular media data, determining location information of the adjunct media data included in the control information, and receiving and storing the adjunct media data according to the location information. If an identifier of the adjunct media data is included in a header of the regular media data, reading the stored adjunct media data corresponding to the identifier of the adjunct media data, and executing the adjunct media data in synchronization with the regular media data according to synchronization information included in the header.
Abstract:
Implementations of quantum well photodetectors are provided. In one embodiment, a quantum structure includes a first barrier layer, a well layer located on the first barrier layer, and a second barrier layer located on the well layer. A metal layer is located adjacent to the quantum structure.
Abstract:
Semiconductor devices including a light emitting layer, and at least one surface plasmon metal layer in contact with the light emitting layer are provided. The light emitting layer includes an active layer having a first band gap, and one or more barrier layers having a second band gap. The first band gap is smaller than the second band gap. Methods for fabricating semiconductor devices are also provided.
Abstract:
There is provided a light emitting diode (LED) driver having an offset voltage compensating function compensating for an offset voltage generated at the time of driving of an LED, the LED driver including: a driving unit detecting a current flowing in an LED unit having at least one LED, as a voltage and controlling the current flowing in the LED unit according to a comparison result between the detected voltage and a reference voltage having a preset voltage level; and an offset compensating unit integrating a voltage difference between the detected voltage and the reference voltage and adding or subtracting a compensating current according to an integration result to thereby compensate for an offset.
Abstract:
An optical fiber sensor may include an optical fiber configured to receive a light having a first frequency from a light source and to transmit the light through the optical fiber, the transmitted light having the first frequency and a second frequency which is generated by stimulated Brillouin scattering (SBS), a photodetector configured to receive the transmitted light from the optical fiber and to convert the transmitted light into an electric signal and a sensing circuit configured to calculate an average squared value of the electric signal received from the photodetector, which is dependent on a frequency difference between the first frequency and the second frequency.