Abstract:
The invention is concerned with a supported or unsupported catalyst comprising an active phase constituted by a sulfur-containing group VIB element, the group VIB element being molybdenum, and a hydrodeoxygenation process with a yield of hydrodeoxygenation product which is greater than or equal to 90% of charges from renewable sources using a catalyst according to the invention.
Abstract:
The present invention relates to hydrogenation catalysts prepared from polyoxometalate precursors. The polyoxometalate precursors introduce a support modifier to the catalyst. The catalysts are used for hydrogenating alkanoic acids and/or esters thereof to alcohols with relatively low ether formation, preferably with conversion of the ester coproduct. The catalyst may also comprise one or more active metals.
Abstract:
Described is a catalyst and process useful in the hydrodesulfurization of a distillate feedstock to manufacture a low-sulfur distillate product. The catalyst comprises a calcined mixture of inorganic oxide material, a high concentration of a molybdenum component, and a high concentration of a Group VIII metal component. The mixture that is calcined to form the calcined mixture comprises molybdenum trioxide, a Group VIII metal compound, and an inorganic oxide material. The catalyst is made by mixing the aforementioned starting materials and forming therefrom an agglomerate that is calcined to yield the calcined mixture that may be used as the catalyst or catalyst precursor.
Abstract:
A process for the preparation of a catalyst from a catalytic precursor comprising a support based on alumina and/or silica-alumina and/or zeolite and comprising at least one element of group VIB and optionally at least one element of group VIII, by impregnation of said precursor with a solution of a C1-C4 dialkyl succinate. An impregnation step for impregnation of said precursor which is dried, calcined or regenerated, with at least one solution containing at least one carboxylic acid other than acetic acid, then maturing and drying at a temperature less than or equal to 200° C., optionally a heat treatment at a temperature lower than 350° C., followed by an impregnation step with a solution containing at least one C1-C4 dialkyl succinate followed by maturing and drying at a temperature less than 200° C. without subsequent calcination step. The catalyst is used in hydrotreatment and/or hydroconversion.
Abstract:
A catalyst for hydrotreating heavy hydrocarbon feedstocks that comprises a calcined particle comprising a co-mulled mixture made by co-mulling an inorganic oxide material, molybdenum trioxide, a nickel compound and phosphorus pentoxide (P2O5) solid, forming said co-mulled mixture into a particle, and calcining said particle to thereby provide said calcined particle.
Abstract translation:一种用于加氢处理重质烃原料的催化剂,其包含煅烧颗粒,该煅烧颗粒包含通过共研磨无机氧化物材料,三氧化钼,镍化合物和五氧化二磷(P 2 O 5)固体制成的共研磨混合物,将所述共研磨混合物形成 颗粒,并煅烧所述颗粒,从而提供所述煅烧颗粒。
Abstract:
A catalyst for the epoxidation of an olefin comprising a carrier and, deposited thereon, silver, a rhenium promoter, a first co-promoter, and a second co-promoter; wherein the quantity of the rhenium promoter deposited on the carrier is greater than 1 mmole/kg, relative to the weight of the catalyst; the first co-promoter is selected from sulfur, phosphorus, boron, and mixtures thereof; the second co-promoter is selected from tungsten, molybdenum, chromium, and mixtures thereof; the total quantity of the first co-promoter and the second co-promoter deposited on the carrier is at most 5.0 mmole/kg, relative to the weight of the catalyst; and wherein the carrier has a monomodal, bimodal or multimodal pore size distribution, a pore diameter of 0.01-200 μm, a specific surface area of 0.03-10 m2/g, a pore volume of 0.2-0.7 cm3/g, wherein the median pore diameter is 0.1-100 μm, and a water absorption of 10-80%.
Abstract:
A method of hydrothermal hydrocatalytic treating biomass is provided. Lignocellulosic biomass is treated with a digestive solvent to form a pretreated biomass containing soluble carbohydrates. The pretreated biomass is contacted, with hydrogen at a temperature in the range of 150° C. to less than 300° C. in the presence of a pH buffering agent and a supported hydrogenolysis catalyst containing (a) sulfur, (b) Mo or W, and (c) Co, Ni or mixture thereof, incorporated into a suitable support, to form a plurality of oxygenated hydrocarbons.
Abstract:
The present invention provides a composite solid acid catalyst consisting of from 50%-80% by weight of a porous inorganic support, from 15% to 48% by weight of a heteropoly compound loaded thereon, and from 2% to 6% by weight of an inorganic acid. The present invention further provides a process for preparing said composite solid acid catalyst and a process for conducting an alkylation reaction by using such catalyst. The composite solid acid catalyst of the present invention has the acid sites type of Brönsted acid and has an acid sites density of not less than 1.4×10−3 mol H+/g. Moreover, said composite solid acid catalyst has the homogeneous acid strength distribution, and is a solid acid catalyst having excellent performances.
Abstract:
A hydroprocessing catalyst composition that comprises a chelant treated metal containing support material having incorporated therein a polar additive. The catalyst composition is prepared by incorporating at least one metal component into a support material followed by treating the metal incorporated support with a chelating agent and thereafter incorporating a polar additive into the chelant treated composition.
Abstract:
Aromatic or heteroaromatic nitro compounds are catalytically hydrogenated to the corresponding amines in the presence of a platinum catalyst comprising elemental platinum on a support; the platinum catalyst is modified with a molybdenum compound and a phosphorus compound wherein the phosphorus has an oxidation state of less than +5, e.g. hypophosphorous acid; the catalyst is particularly useful in the hydrogenation of nitro compounds with halogen and/or sulfur-containing substituents.