摘要:
A process for manufacturing a sintered ceramic composite, based on silicon nitride and β-eucryptite, includes a step of producing a first powder blend, consisting of a powder of silicon nitride in crystalline form and a powder of a first lithium aluminosilicate in crystalline form, the composition of which is the following: (Li2O)x(Al2O3)y(SiO2)z, the lithium aluminosilicate composition being such that the set of molar fractions (x,y,z) is different from the set (1,1,2).
摘要翻译:用于制造基于氮化硅和β-堇青石的烧结陶瓷复合材料的方法包括生产由结晶形式的氮化硅粉末和晶体形式的第一铝硅酸铝粉末组成的第一粉末掺合物的步骤, 其组成如下:(Li 2 O)x(Al 2 O 3)y(SiO 2)z,铝硅酸铝组合物使得摩尔分数(x,y,z)的集合不同于组(1,1, 2)。
摘要:
A method for laying carbon nanotube film includes following steps. A carbon nanotube film is provided. The carbon nanotube film includes a number of carbon nanotube strings substantially parallel to each other and extending along a first direction. The carbon nanotube film is stretched along a second direction substantially perpendicular with the first direction to form a deformation along the second direction. The carbon nanotube film is placed on a surface of a substrate. The deformation along the second direction is kept.
摘要:
An array of aligned and dispersed carbon nanotubes includes an elongate drawn body including a plurality of channels extending therethrough from a first end to a second end of the body, where the channels have a number density of at least about 100,000 channels/mm2 over a transverse cross-section of the body. A plurality of carbon nanotubes are disposed in each channel, and the carbon nanotubes are sufficiently dispersed and aligned along a length of the channels for the array to comprise an average resistivity per channel of about 9700 Ωm or less.
摘要:
Provided is a sintered object which has excellent resistance to corrosion by corrosive halogen gases and by the plasmas thereof and has excellent thermal conductivity and excellent electrical conductivity. Even when applied to members for use in various vacuum process devices, the sintered object has few limitations on design. The sintered object is usable in a wide range of applications, and is highly versatile. Also provided is a method for producing the sintered object. Furthermore provided is a high-frequency transmission material which has direct-current electrical conductivity for reducing fluctuations in plasma potential and has capacitive properties that enable the material to transmit high-frequency power necessary for plasma excitation, and which has no fear of causing contamination of a sample with a metal and has resistance to corrosion by plasmas. Still further provided are: a sintered object which has excellent resistance to corrosion by corrosive halogen gases and by the plasmas thereof and has no frequency dependence when a high-frequency voltage is applied thereto and with which it is possible to actualize the stability of a plasma; and a method for producing the sintered object.
摘要:
According to the present invention, there is provided a method of forming a composite material comprising nanotubes oriented in a matrix comprising a ceramic material, the method comprising the steps of: providing an array of substantially aligned nanotubes; providing a ceramic matrix material in the form of a solution; applying the solution to the nanotubes; allowing the solution to infiltrate into the array of nanotubes; and sintering the ceramic matrix material to form the composite material, wherein the nanotubes are substantially aligned in the ceramic matrix. Composite materials obtainable by said method are also provided.
摘要:
Composite material for storing heat energy at high temperatures (225° C. to 488° C.) formed by a porous carbon structure at least partially filled with LiOH/KOH, wherein a large amount of heat energy may be stored or released very quickly. The carbon structure is characterised by a high volumetric thermal conductivity, a low density, a highly interconnected porosity and a relatively high modulus of elasticity. The significant properties of LiOH/KOH mixtures are: a large amount of energy involved in full melting/crystallisation, a fairly low relative volume expansion upon melting and fairly low subcooling. The main advantages of the resulting composites are a very high energy density, a relatively low volume expansion, highly enhanced heat transfer, thermoadaptability, stability and insignificant hysteresis.
摘要:
Composite structures of carbon nanotubes (CNTs) and metal carbides include a helical nanotube/carbide composite fiber, and a film. The composite fiber was prepared by pulling/twisting carbon nanotubes from an array of nanotubes to form an as-spun fiber and soaking it a metal precursor solution, and then heating it under a reducing atmosphere with a carbon source. The composite fiber had a higher tensile strength, a higher conductivity, and a higher tensile modulus than the as-spun fiber. A composite structure in the form of parallel ribbons of aligned carbon nanotubes embedded in a film of NbC showed an enhanced conductivity along the CNT axial direction, and improved superconducting properties. The enhanced upper critical field of NbC/CNT suggested that the inclusion of CNTs in the NbC matrix reduced the coherence length of the NbC. Nanomechanical testing also demonstrated the potential for enhanced fracture toughness of NbC/CNT composites.
摘要:
The present invention relates to coated fullerenes comprising a layer of at least one inorganic material covering at least a portion of at least one surface of a fullerene and methods for making. The present invention further relates to composites comprising the coated fullerenes of the present invention and further comprising polymers, ceramics and/or inorganic oxides. A coated fullerene interconnect device wherein at least two fullerenes are contacting each other to form a spontaneous interconnect is also disclosed as well as methods of making. In addition, dielectric films comprising the coated fullerenes of the present invention and methods of making are further disclosed.
摘要:
A composite material being excellent in heat conductivity is provided. In order to realize this, a fibrous carbon material made of fine tube form structures constituted with single-layer or multiple-layer graphene is present to form a plurality of layers within a substrate made from a spark plasma sintered body of a metal powder, a mixed powder of a metal and ceramics, or a ceramic powder. The fibrous carbon material constituting each layer is made of a mixture obtained by mixing a small amount of a small diameter fiber 2 having an average diameter of 100 nm or less with a large diameter fiber 1 having an average diameter of 500 nm to 100 μm.
摘要:
Composite materials and methods of forming composite materials are provided. The composite materials described herein can be utilized as an electrode material for a battery. In certain embodiments, the composite material includes greater than 0% and less than about 90% by weight silicon particles, and greater than 0% and less than about 90% by weight of one or more types of carbon phases. At least one of the one or more types of carbon phases can be a substantially continuous phase. The method of forming a composite material can include providing a mixture that includes a precursor and silicon particles, and pyrolysing the precursor to convert the precursor into one or more types of carbon phases to form the composite material.