Abstract:
A reactive distillation method comprises introducing a feed stream to a reactive distillation column, contacting the feed stream with one or more catalysts in the reactive distillation column during a distillation, and removing one or more higher alcohols during the distillation from the reactive distillation column as a bottoms stream. The feed stream comprises one or more alpha hydrogen alcohols, and the feed stream reacts in the presence of the one or more catalysts to produce a reaction product comprising the one or more higher alcohols.
Abstract:
Methods for producing alcohols and oligomers contemporaneously from a hydrocarbon feed containing mixed butenes using an acid based catalyst are provided. Additionally, methods for producing fuel compositions having alcohols and oligomers prepared from mixed olefins are also provided as embodiments of the present invention. In certain embodiments, the catalyst can include a dual phase catalyst system that includes a water soluble acid catalyst and a solid acid catalyst.
Abstract:
The present invention provides a process for the production of aldehydes and/or alcohols, which process comprises the steps of: (a) reacting an oxygenate and/or olefinic feed in a reactor in the presence of a molecular sieve catalyst to form an effluent comprising olefins, comprising propylene; (b) separating the effluent comprising olefins as obtained in step (a) into at least a first olefinic product fraction comprising propylene and a second olefinic product fraction; (c) subjecting at least part of the first olefinic product fraction as obtained in step (b) to a hydroformylation process to form aldehydes; (d) separating at least part of the aldehydes as obtained in step (c) into at least a first product fraction of aldehydes and a second product fraction of aldehydes; and (e) hydrogenating at least part of the aldehydes in the first and/or second product fraction of aldehydes as obtained in step (d) to form a first product fraction of alcohols and/or a second product fraction of alcohols; (f) recycling at least part of the first and/or second product fraction of alcohols obtained in step (e) to step (a).
Abstract:
A method for preparing a mixture (M) including at least one alcohol (Aj), wherein said method includes a gas-phase oligomerization reaction of at least one alcohol (Ai) with a solid acid-base catalyst doped with one or more metals, said reaction being carried out in the presence of hydrogen and at a temperature of no less than 50° C. and strictly less than 200° C.
Abstract:
Biomass feedstocks (e.g., plant biomass, animal biomass, and municipal waste biomass) are processed to produce useful products, such as fuels. For example, novel systems, methods and equipment for conveying and/or cooling treated biomass are described.
Abstract:
Ketene chemistry and hydrogenation reactions are used to synthesize fuels and chemicals. Ketene from acetic acid is hydrogenated to form fuels and chemicals; acetic acid can be synthesized from synthesis gas which is produced from coal, biomass, natural gas, etc. In one embodiment, the present application discloses methods to selectively synthesize higher alcohols and hydrocarbons useful as fuels and industrial chemicals from syngas and biomass.
Abstract:
An improved process for the hydration of C2-C5 olefins to the corresponding alcohols via heterogeneous reactive extraction with ion exchange resin catalysts is provided. The improvements are based on the application of a structured catalytic packing, a simultaneous product extraction in multiple condensed phases for enhancement of the overall alcohol production rate and a simplified product purification procedure.
Abstract:
The present invention relates to an alcohol concentration method which comprises sealing in an alcohol aqueous solution by a laminate formed by extrusion lamination of polyethylene terephthalate onto at least one surface of an air permeable film-shaped substrate; and storing the alcohol aqueous solution in the laminate for a predetermined period of time, whereby the alcohol in the alcohol aqueous solution can be concentrated easily and conveniently.
Abstract:
Provided herein are processes for adjusting a fermentation medium to reduce the activity of one or more carboxylic acids. The processes comprise (a) providing a recombinant microorganism comprising an engineered butanol biosynthetic pathway, (b) contacting the recombinant microorganism with a fermentation medium whereby butanol is produced and wherein the fermentation medium comprises one or more carboxylic acids, and (c) adjusting the fermentation medium to reduce the activity of the one or more carboxylic acids. Also provided are processes for reducing the activity of one or more carboxylic acids in a feed. The processes comprise (a) providing a feed from a fermentation vessel, wherein the feed comprises a composition produced by a recombinant microorganism comprising an engineered butanol biosynthetic pathway, wherein the composition comprises butanol, water, and one or more carboxylic acids; and (b) adjusting the feed, wherein adjusting the feed reduces the activity of the one or more carboxylic acids.
Abstract:
Plants and methods are presented in which organosulfur compounds in a mixed alcohol synthesis reactor effluent are converted into hydrogen sulfide (H2S). The volatility and relative insolubility of H2S reduces the overall sulfur content of the mixed alcohol synthesis product stream while significantly reducing or even eliminating the need for process steps/equipment to remove organosulfur compounds from liquid and gaseous products.