Abstract:
The inventors of this invention conducted a test and found out that to prevent peel-off of an adherent film, it is not of essential importance to set the radius of curvature equal to or larger than a predetermined threshold. The inventors of the present invention also found out that peel-off of an adherent film occurs in the region in which the curvature of a shield changes and is less likely to occur when the change in curvature of the shield is small. Accordingly, the key to the problem is the magnitude of a change in curvature of the shield, so changing the curvature stepwise makes it possible to suppress a large change in curvature, and thus to prevent peel-off of an adherent film free from any disadvantages such as deterioration in film thickness distribution, which may occur due to an increase in size of the shield.
Abstract:
A substrate cleaning chamber comprises various components, such as for example, a consumable ceramic liner, substrate heating pedestal, and process kit. The consumable ceramic liner is provided for connecting a gas outlet channel of a remote gas energizer to a gas inlet channel of a substrate cleaning chamber. The substrate heating pedestal comprises an annular plate having a substrate receiving surface with a plurality of ceramic balls positioned in an array of recesses. A process kit comprises a top plate, top liner, gas distributor plate, bottom liner, and focus ring.
Abstract:
An apparatus. The apparatus including: a chamber having an interior surface; a pump port for evacuating the chamber; a substrate holder within the chamber; a charged particle beam within the chamber, the charged beam generated by a source and the charged particle beam striking the substrate; and one or more liners in contact with one or more different regions of the interior surface of the chamber, the liners preventing material generated by interaction of the charged beam and the substrate from coating the one or more different regions of the interior surface of the chamber.
Abstract:
An apparatus. The apparatus including: a chamber having an interior surface; a pump port for evacuating the chamber; a substrate holder within the chamber; a charged particle beam within the chamber, the charged beam generated by a source and the charged particle beam striking the substrate; and one or more liners in contact with one or more different regions of the interior surface of the chamber, the liners preventing material generated by interaction of the charged beam and the substrate from coating the one or more different regions of the interior surface of the chamber.
Abstract:
A charged particle beam apparatus in which an electrostatic lens is used as a main focusing element to obtain a subminiature high-sensitivity high-resolution SEM, a drift tube for an electron beam is located inside a column between an electron source and a sample, and a detector for secondary electrons is located inside the drift tube. This solves the problem associated with the provision of a secondary electron detector, which heretofore has been a bottleneck in making a subminiature high-resolution SEM column.
Abstract:
A liner (102) for an arc chamber (100) of an ion implanter. The arc chamber (100) comprises a liner (102) on the inner surface (104) of the arc chamber (100) that extends the life of the arc chamber (100). The liner (102) comprises a one piece portion (102a) that covers the bottom and long sidewalls of the arc chamber (100) and two end plates (102b) for covering the end walls of the arc chamber (100). When the liner (102) wears out it is replaced at a significantly reduced cost compared to replacing the entire arc chamber (100).
Abstract:
A scanning electron microscope is provided with a channel cylinder between a sample and an electron source. The channel cylinder generates a deceleration electrical field to decelerate an electron beam emitted from the electron source. The channel cylinder has a portion having an electron source side and sample side. A detector is provided on the electron source side and sample channel cylinder portion. The detector detects the secondary signal emitted from the sample, so that a scan image is obtained with a high spatial resolution.