Abstract:
A method of measuring a three-dimensional device in a wafer is provided. The method comprises the step of forming a trench in the wafer. The trench has a facet passing through the three-dimensional device a predetermined offset from a desired image position. The method further comprises iteratively, until a remaining distance between the facet and the desired image position is less than a predetermined threshold, adjusting one or more parameters of a polishing beam based on the remaining distance, polishing the facet with the polishing beam to position the facet closer to the desired image position, and measuring the remaining distance.
Abstract:
A seamless mold manufacturing method of the invention is a seamless mold manufacturing method having the steps of forming a thermal reaction type resist layer on a sleeve-shaped mold, and exposing using a laser and developing the thermal reaction type resist layer and thereby forming a fine mold pattern, and is characterized in that the thermal reaction type resist layer is comprised of a thermal reaction type resist having a property of reacting in predetermined light intensity or more in a light intensity distribution in a spot diameter of the laser.
Abstract:
The pattern observation method for observing a pattern which is formed on an insulating film, includes: irradiating an entirety of the pattern with a charged particle beam, to obtain a temporary image of the pattern which has region information of a convex pattern and a concave pattern; irradiating the convex and concave patterns with the charged particle beam having a first and second voltages based on the region information, to thereby form an electric field between a top surface of the convex pattern and a bottom surface of the concave pattern so that charged particles emitted from the bottom surface of the concave pattern may be drawn out to an outside of the pattern; and irradiating the entirety of the pattern with the charged particle beam to obtain an image of the pattern having the information of the bottom surface of the concave pattern.
Abstract:
A morphological operation is applied to an SEM image to obtain a idealized image, and the idealized image is used to detect a defect in a subject of the SEM image. The defect is detected by subtraction of the idealized image from the original image. Morphological operations are used also to entrance the visibility of defects or to check for irregularities in patterns. Other described methods comprise: growing a flow from seed points in the image, in order to define maps in which particles can be identified; checking for separation of objects in the image by growing flows from seed points located on the objects; segmenting the image into supposed identical objects and applying statistical methods to identify the defective ones.
Abstract:
A method for process monitoring includes receiving a sample having a first layer that is at least partly conductive and a second layer formed over the first layer, following production of contact openings in the second layer. A beam of charged particles is directed along a beam axis that deviates substantially in angle from a normal to a surface of the sample, so as to irradiate one or more of the contact openings in each of a plurality of locations distributed over at least a region of the sample. A specimen current flowing through the first layer is measured in response to irradiation of the one or more of the contact openings at each of the plurality of locations. A map of at least the region of the sample is created, indicating the specimen current measured in response to the irradiation at the plurality of the locations.
Abstract:
It is an object of the present invention to obtain an image which is focused on all portions of a sample and to provide a charged particle beam apparatus capable of obtaining a two-dimensional image which has no blurred part over an entire sample. In order to achieve the above object, the present invention comprises means for changing a focus condition of a charged particle beam emitted from a charged particle source, a charged particle detector for detecting charged particles irradiated from a surface portion of said sample in response to the emitted charged particle beam, and means for composing a two-dimensional image of the surface portion of the sample, based on signals on which said charged particle beam is focused, said signals being among signals output from the charged particle detector.
Abstract:
It is an object of the present invention to obtain an image which is focused on all portions of a sample and to provide a charged particle beam apparatus capable of obtaining a two-dimensional image which has no blurred part over an entire sample. In order to achieve the above object, the present invention comprises means for changing a focus condition of a charged particle beam emitted from a charged particle source, a charged particle detector for detecting charged particles irradiated from a surface portion of said sample in response to the emitted charged particle beam, and means for composing a two-dimensional image of the surface portion of the sample based on signals on which said charged particle beam is focused, said signals being among signals output from the charged particle detector.
Abstract:
A scanning electron microscope with an energy filter which can positively utilize secondary electrons and/or reflected electrons which collide against a mesh electrode and are lost. The scanning electron microscope which has a porous electrode for producing an electric field for energy-filtering electrons produced by applying a primary electron beam to a sample and a 1st electron detector which detects electrons passing through the porous electrode is characterized by further having a porous structure provided near the sample, a deflector which deflects electrons from the axis of the primary electron beam, and a 2nd electron detector which detects the electrons deflected by the deflector.
Abstract:
Method and apparatus for imaging at multiple perspectives of a specimen are disclosed. In one embodiment, an apparatus for generating a multi-perspective image using multiple charged particle beams (e.g., electron beams) is disclosed. In one embodiment, the apparatus generally includes a charged particle beam generator system arranged to generate and control a first charged particle beam directed substantially at a first angle towards the specimen and a second charged particle beam directed substantially at a second angle towards the specimen. The apparatus also includes an image generator arranged to generate one or more images based on charged particles emitted from the specimen in response to the first and second charged particle beams and a controller arranged to cause the charged particle beam generator to direct both the first charged particle beam and the second charged particle beam at a first area of the specimen. In a specific implementation, the charged particles are in the form of electrons and the apparatus is a dual electron beam scanning electron microscope (SEM).
Abstract:
It is an object of the present invention to obtain an image which is focused on all portions of a sample and to provide a charged particle beam apparatus capable of obtaining a two-dimensional image which has no blurred part over an entire sample. In order to achieve the above object, the present invention comprises means for changing a focus of a charged particle beam emitted from a charged particle source, a charged particle detector for detecting charged particles obtained at a portion of said sample irradiated with the charged particle beam, and means for composing a two-dimensional image of the sample as viewed from a direction of said charged particle beam source, based on signals on which said charged particle beam is focused, said signals being among signals output from the charged particle detector.