Abstract:
A well-logging tool may include a sonde housing and a radiation generator carried by the sonde housing. The radiation generator may include a generator housing, a target carried by the generator housing, a charged particle source carried by the generator housing to direct charged particles at the target, and at least one voltage source coupled to the charged particle source. The at least one voltage source may include a voltage ladder comprising a plurality of voltage multiplication stages coupled in a uni-polar configuration, and at least one loading coil coupled at at least one intermediate position along the voltage ladder. The well-logging tool may further include at least one radiation detector carried by the sonde housing.
Abstract:
A well-logging tool may include a sonde housing, and a radiation generator carried by the sonde housing. The radiation generator may include a generator housing, a target carried by the generator housing, a charged particle source carried by the generator housing to direct charged particles at the target, and at least one voltage source coupled to the charged particle source. The at least one voltage source may include a voltage ladder comprising a plurality of voltage multiplication stages coupled in a bi-polar configuration, and at least one loading coil coupled at at least one intermediate position along the voltage ladder. The well-logging tool may further include at least one radiation detector carried by the sonde housing.
Abstract:
Method for operating a mass spectrometer includes supplying a quantity of ions to an ion detector. The ion detector can include a conversion dynode operating in a first polarity and an electron multiplier. The method further includes adjusting the gain of the electron multiplier to determine a first set of calibration parameters, and calculating a second set of calibration parameters for the electron multiplier from the first set of calibration parameters. The second set of calibration parameters are for a second polarity of the conversion dynode. The method can further include configuring the ion detector to operate at the second polarity based on the second set of calibration parameters, and supplying ions of the second polarity to the mass spectrometer, and detecting an ion at a particular mass to charge ratio using the ion detector.
Abstract:
An anion generating and electron capture dissociation apparatus using cold electrons, which comprises a cold electron generation module configured to generate a large quantity of cold electrons from ultraviolet photons radiated into a mass spectrometer vacuum chamber which is in a high vacuum state has a plurality of ultraviolet diodes configured to emit the ultraviolet photons in the mass spectrometer vacuum chamber. Micro-channel plate (MCP) electron multiplier plates induce and amplify initial electron emissions of the ultraviolet photons from the ultraviolet diodes, and generate a large quantity of electron beams from a rear plate. An electron focusing lens is configured to focus the electron beams amplified through the MCP electron multiplier plates. A grid is configured to adjust energy and an electric current of the electron beams together with the electron focusing lens.
Abstract:
The present invention relates to a low-resistance MCP with an expanded dynamic range and excellent environment resistance, in comparison with the conventional technology. The MCP has a double structure composed of hollow first cladding glasses whose inner wall surfaces function as channel walls, and a second cladding glass having an acid resistance lower than that of the first cladding glasses.
Abstract:
A novel electron multiplier that regulates in real time the gain of downstream dynodes as the instrument receives input signals is introduced. In particular, the methods, electron multiplier structures, and coupled control circuits of the present invention enable a resultant on the fly control signal to be generated upon receiving a predetermined threshold detection signal so as to enable the voltage regulation of one or more downstream dynodes near the output of the device. Accordingly, such a novel design, as presented herein, prevents the dynodes near the output of the instrument from being exposed to deleterious current pulses that can accelerate the aging process of the dynode structures that are essential to the device.
Abstract:
The present invention relates to a low-resistance MCP with an expanded dynamic range and excellent environment resistance, in comparison with the conventional technology. The MCP has a double structure composed of hollow first cladding glasses whose inner wall surfaces function as channel walls, and a second cladding glass having an acid resistance higher than that of the first cladding glasses.
Abstract:
The present invention relates to a photomultiplier having a structure for making it possible to easily realize high detection accuracy and fine processing, and a method of manufacturing the same. The photomultiplier comprises an enclosure having an inside kept in a vacuum state, whereas a photocathode emitting electrons in response to incident light, an electron multiplier section multiplying in a cascading manner the electron emitted from the photocathode, and an anode for taking out a secondary electron generated in the electron multiplier section are arranged in the enclosure. A part of the enclosure is constructed by a glass substrate having a flat part, whereas each of the electron multiplier section and anode is two-dimensionally arranged on the flat part in the glass substrate.
Abstract:
An electron multiplier can be fabricated by depositing an electron emissive material on a reticulated substrate, and forming the reticulated substrate into the electron multiplier.