Abstract:
A high voltage, high current vacuum integrated circuit includes a common vacuum enclosure that includes at least two cold-cathode field emission electron tubes, and contains at least one internal vacuum pumping means, at least one exhaust tubulation, vacuum-sealed electrically-insulated feedthroughs, and internal electrical insulation. The cold-cathode field emission electron tubes are configured to operate at high voltage and high current and interconnected with each other to implement a circuit function.
Abstract:
An integrated circuit and method are provided for controlling variation in the voltage output from on-chip voltage generation circuitry. The integrated circuit comprises voltage generation circuitry configured to operate from a supplied input voltage and to generate at an output node an on-chip voltage supply different to the supplied input voltage. A circuit block is then arranged to receive the on-chip voltage supply generated by the voltage generation circuitry, during operation of the circuit block the circuit block presenting a varying load on the output node. Oscillation circuitry is also coupled to the output node to provide an additional load on the output node, and is configured to produce an oscillation signal whose frequency varies as the value of the on-chip voltage supply varies. Control circuitry is configured to be responsive to a trigger condition to adjust the additional load provided on the output node by the oscillation circuitry. This provides a particularly simple and effective mechanism for providing an additional load on the output node which can be altered with the aim of offsetting variation in the load on the output node presented by the circuit block, thus allowing the variation in the voltage output from the on-chip voltage generation circuitry to be controlled.
Abstract:
Provided is a charged particle beam apparatus, which can emit a stable electron beam, having high brightness and a narrow energy width. The charged particle beam apparatus comprises a field emission electron source, electrodes for applying an electric field to the field emission electron source, and a vacuum exhaust unit for keeping the pressure around the field emission electron source at 1×10−8 Pa or less. The apparatus is so constituted as to use such one of the electron beams emitted as has an electron-beam-center radiation angle of 1×10−2sr or less, and to use the electric current thereof, the second order differentiation of which is negative or zero with respect to the time, and which reduces at a rate of 10% or less per hour. The charged particle beam apparatus further comprises a heating unit for the field emission electron source, and a detection unit for the electric current of the electron beam. The field emission electron source is repeatedly heated to keep the electric current of the electron beam to be emitted, at a predetermined value or higher.
Abstract:
A voltage jitter suppression circuit and a method thereof are disclosed. The circuit is utilized for alleviating the voltage jitter phenomenon of an IC. Regardless of the circuit frequency and voltage, the voltage jitter phenomenon of the circuit can be improved significantly by utilizing the present invention.
Abstract:
The invention relates to a voltage regulating circuit arrangement for converting a first voltage (VEXT) applied to an input of said voltage regulating circuit arrangement into a second voltage (VBLH) that may be tapped at an output of said voltage regulating circuit arrangement, wherein, when said first voltage (VEXT) falls below a threshold value (VEXT_THRESHOLD), the first voltage (VEXT) applied to the input of said voltage regulating circuit arrangement is connected through to said output of said voltage regulating circuit arrangement.
Abstract:
An active power supply filter effectively eliminates power supply noise using a resistive element and a capacitive element coupled at a node, and a switch with a control terminal controlled by the node. The active power supply filter is suitable for high frequency operation of a voltage-controlled oscillator (VCO) in a phase-locked loop (PLL) of a high-speed microprocessor. The active power supply filter removes VCO noise that would otherwise create jitter that reduces the effective clock cycle of the microprocessor. The active power supply filter is similarly useful in applications other than VCOs, PLLs, and microprocessors in which removal of substantial amounts of noise from the power supply is useful.
Abstract:
A frequency-independent voltage divider includes a series arrangement of resistors connected between an input terminal and a reference terminal for receiving an input signal. An output terminal for supplying an output signal is coupled to a tap of the series arrangement. The influence of parasitic capacitances is eliminated by compensation capacitors.
Abstract:
The invention relates to a voltage multiplier such as a charge pump circuit. The circuit is realized by a plurality of cascade connected voltage gain stages, each stage comprising a first and a second cell each receiving a pair of clock phase signals and comprising a pair of MOS transistors having first and second conduction terminals and a control terminal. These transistors have their first conduction terminals connected together and to a voltage reference; while the control terminals of each transistor are connected to the second conduction terminal of the other transistor of the same cell. Moreover, the second conduction terminal of the first transistor receives a first phase signal via a first coupling capacitor, and the second conduction terminal of the second transistor receives a second phase signals via a first pumping capacitor. Third and fourth cells are provided having the same structure as the first and the second cell. The third cell is coupled to the first cell by a series connection between their corresponding coupling capacitors and their corresponding pumping capacitors, respectively. The fourth cell is coupled to the second cell by a series connection between their corresponding coupling capacitors and by their corresponding pumping capacitors, respectively.