Abstract:
An ion source device includes an electron generating chamber detachably combined with an electron attraction electrode and an ion generating chamber through insulating members. Hooks are projected from both sides of the electron generating chamber. A holder plate is arranged under the ion generating chamber with an insulating member interposed between them. A fixing member is arranged under the holder plate. The fixing member includes a pusher supported by coned disc springs and this pusher of the fixing member is fitted into a recess on the underside of the holder plate and struck against the top of the recess. A pair of holder members are arranged along both sides of the device. The holder members are detachably engaged with the hooks of the electron generating chamber at the upper portion thereof and also detachably engaged with the fixing member at the lower portion thereof. The components ranging from the electron generating chamber to the holder plate are held and fixed between the hooks of the electron generating chamber and the pusher of the fixing member through the holder members.
Abstract:
In order to avoid undesired variations in the emission current intensity of a clamping device for a thermally emitting cathode tip constructed from pyrolytice graphite, a resilient coupling compensating the thermal stresses n the graphite is provided in an electron beam apparatus.
Abstract:
A piezoelectric crystal without spontaneous polarization such as Li.sub.2 B.sub.4 O.sub.7 or quartz crystal is jointed to a cathode on the side opposite to the tip thereof to finely drive the cathode. The surface observation apparatus mounting the cathode makes it possible to observe the surface of a sample at high speeds.
Abstract:
An electron gun for use in electron irradiation equipment. The gun comprises a cartridge including a Wehnelt electrode and a filament with two plug electrodes mounted on an insulating plate. The filament is mounted between the Wehnelt electrode and a conductive plate by two fasteners and can be adjustably aligned with respect to the Wehnelt electrode by moving the electrode with respect to the filament before the mounting is made fast. The electrical potential supply terminal has two jacks which receive the plug electrodes thereby mechanically and electrically coupling the cartridge to the potential supply and the Wehnelt electrode receives its potential through a resilient contact on the potential supply terminal.
Abstract:
Examples of an electron gun with a moving cathode station and a moving anode station are described. The moving cathode has a driver that moves the station and comprises a plurality of cathodes with a plurality of bias cups to control a thermal electron emission region by applying a bias voltage to the bias cup. The moving anode station comprises a plurality of anodes and has driver to move the anode station such that a position of each anode is synchronized with a positioned of a respective matching pair of cathode and bias cup. A controller that is in communication with the anode and cathode moving stations controls the bias voltage and the drivers to control the amount of thermal electrons and to synchronize and align a predetermined cathode with a predetermined anode thus controlling the size and parameters of the generated electron beam.
Abstract:
Examples of an electron gun with a moving cathode station and a moving anode station are described. The moving cathode has a driver that moves the station and comprises a plurality of cathodes with a plurality of bias cups to control a thermal electron emission region by applying a bias voltage to the bias cup. The moving anode station comprises a plurality of anodes and has driver to move the anode station such that a position of each anode is synchronized with a positioned of a respective matching pair of cathode and bias cup. A controller that is in communication with the anode and cathode moving stations controls the bias voltage and the drivers to control the amount of thermal electrons and to synchronize and align a predetermined cathode with a predetermined anode thus controlling the size and parameters of the generated electron beam.
Abstract:
Disclosed are a filament positioning system and a filament positioning method. The filament positioning system includes a bottom plate, a first positioning regulating mechanism and a second positioning regulating mechanism, wherein the first positioning regulating mechanism is configured to conduct positioning regulation of a position of a filament seat on the bottom plate, so that filament seats of different models can be fixed to the bottom plate, and the second positioning regulating mechanism is configured to conduct positioning regulation on the filament; and a detection module configured to collect and display position information of a filament tip and the filament seat, wherein the first positioning regulating mechanism and the second positioning regulating mechanism correspondingly regulate positions of the filament seat and the filament tip according to the position information.
Abstract:
A scanning electron microscopy (SEM) system includes a plurality of electron-optical columns and a plurality of electron beam sources. The electron beam sources include an emitter including one or more emitter tips configured to generate one or more electron beams of a plurality of electron beams. The electron beam sources include a stack of one or more positioners configured to adjust a position of the emitter based on one or more measurements of the electron beam generated by the emitter. The emitter is configured to scan the one or more electron beams across an area surrounding a bore of an electron-optical column of the plurality of electron-optical columns. The electron beam source array includes a carrier plate and a source tower. The source tower is configured to adjust a position of the plurality of electron beam sources relative to a position of the plurality of electron-optical columns.
Abstract:
The present invention is a charged-particle gun (EG) in which a negative electrode (1) and a positive electrode (9) are integrated and assembled in advance, and which can be stored and transported in a state in which the negative electrode and the positive electrode are integrated, wherein the negative electrode and the positive electrode are connected by a conductor (11) during storage and transportation of the charged-particle gun. It is thereby possible to prevent an electrode tip of the charged-particle gun from being damaged by electrical discharge caused by static electricity during storage and transportation.