Abstract:
A method of manufacturing a pinned photodiode, including: forming a region of photon conversion into electric charges of a first conductivity type on a substrate of the second conductivity type; coating said region with a layer of a heavily-doped insulator of the second conductivity type; and annealing to ensure a dopant diffusion from the heavily-doped insulator layer.
Abstract:
A device for converting thermal energy into electric energy intended to be used in combination with a hot source including: a capacitor of variable capacitance, including two electrodes separated by an electrically-insulating material, one of these electrodes being deformable and being associated with an element forming a bimetallic strip, said bimetallic strip including at least two layers of materials having different thermal expansion coefficients, said bimetallic strip being free to deform when it is submitted to the heat of said hot source; a second capacitor having a first electrode connected to a first electrode of said capacitor of variable capacitance; a harvesting circuit electrically connected between the second electrode of the capacitor of variable capacitance and the second electrode of the second capacitor, said harvesting circuit being capable of conducting the current flowing between said second electrodes.
Abstract:
A SPAD-type photodiode has a semiconductor substrate with a light-receiving surface. A lattice formed of interlaced strips made of a first material covers the light receiving surface. The lattice includes lattice openings with lateral walls covered by a spacer made of a second material. Then first and second materials have different optical indices, and further each optical index is less than or equal to the substrate optical index. A pitch of the lattice is of the order of a magnitude of an operating wavelength of the photodiode. The first and second materials are transparent at that operating wavelength. The lattice is made of a conductive material electrically coupled to an electrical connection node (for example, a bias voltage node).
Abstract:
The present disclosure relates to a photodiode comprising: a P-conductivity type substrate region, an electric charge collecting region for collecting electric charges appearing when a rear face of the substrate region receives light, the collecting region comprising an N-conductivity type region formed deep in the substrate region, an N-conductivity type read region formed in the substrate region, and an isolated transfer gate, formed in the substrate region in a deep isolating trench extending opposite a lateral face of the N-conductivity type region, next to the read region, and arranged for receiving a gate voltage to transfer electric charges stored in the collecting region toward the read region.
Abstract:
A method of manufacturing an integrated circuit including photonic components on a silicon layer and a laser made of a III-V group material includes providing the silicon layer positioned on a first insulating layer that is positioned on a support. First trenches are etched through the silicon layer and stop on the first insulating layer, and the first trenches are covered with a silicon nitride layer. Second trenches are etched through a portion of the silicon layer, and the first and second trenches are filled with silicon oxide, which are planarized. The method further includes removing the support and the first insulating layer, and bonding a wafer including a III-V group heterostructure on the rear surface of the silicon layer.
Abstract:
An integrated capacitive-type humidity sensor formed in a semiconductor chip integrating a sensing capacitor and a reference capacitor. Each of the sensing and reference capacitors have at least a first electrode and at least a second electrode, the first and second electrodes of each of the sensing and reference capacitors being arranged at distance and mutually insulated. A hygroscopic layer extends on the sensing and reference capacitors and a conductive shielding region extends on the reference capacitor but not on the sensing capacitor.
Abstract:
An integrated circuit includes a back side illuminated image sensor formed by a substrate supporting at least one pixel, an interconnect part situated above a front side of the substrate and an anti-reflective layer situated above a back side of the substrate. The anti-reflective layer may be formed of a silicon nitride layer. An additional layer is situated above the anti-reflective layer. The additional layer is formed of one of amorphous silicon nitride or hydrogenated amorphous silicon nitride, in which the ratio of the number of silicon atoms per cubic centimeter to the number of nitrogen atoms per cubic centimeter is greater than 0.7.
Abstract:
An integrated circuit includes a substrate and an interconnect part above the substrate, and further includes a photosensitive region in the substrate. A filter is provided aligned with the photosensitive region. The filter is formed by at least one layer of filter material. In one implementation for front side illumination, the layer of filter material is positioned above the photosensitive region between the interconnect part and the substrate. In another implementation for back side illumination, the layer of filter material is positioned below the photosensitive region opposite the interconnect part. The layer of filter material is configured such that a product of the thickness of the layer of filter material and the imaginary part of the refractive index of the layer of filter material is above 1 nm.
Abstract:
A method for manufacturing a suspended membrane in a single-crystal semiconductor substrate, including the steps of: forming in the substrate an insulating ring delimiting an active area, removing material from the active area, successively forming in the active area a first and a second layers, the second layer being a single-crystal semiconductor layer, etching a portion of the internal periphery of said ring down to a depth greater than the thickness of the second layer, removing the first layer so that the second layer formed a suspended membrane anchored in the insulating ring.
Abstract:
An integrated imaging device supports front face illumination with one or more photosensitive regions formed in a substrate. A lower dielectric region is provided over the substrate, the lower dielectric region having an upper face. A metal optical filter having a metal pattern is provided on the upper face (or extending into the lower dielectric region from the upper face). An upper dielectric region is provided on top of the lower dielectric region and metal optical filter. The lower dielectric region is at least part of a pre-metal dielectric layer, and the upper dielectric region is at least part of a metallization layer.