Abstract:
In relation to the NAO friction material free of copper component, this invention is to provide the friction material that prevents the occurrence of metal catch while securing sufficient wear resistance. In the friction material manufactured by forming the NAO friction material composition which is free of copper component, the above-described friction material composition does not contain metal simple substance or alloy and contains, as the lubricant, metal sulfide having 600 centigrade or higher decomposition temperature to be decomposed into metal and sulfur, 2.0-5.0 weight % of graphite and a zirconium silicate as an abrasive material. Here, the metal sulfide is not a molybdenum disulfide or a tungsten disulfide. Especially, the content of the metal sulfide is preferably 0.5-2.0 weight % relative to the total amount of the friction material composition.
Abstract:
A refractory formulation containing an anhydrous solvent, an oleophilic rheology modifier and a refractory aggregate exhibits non-thermoplastic behavior, and remains plastic and formable at temperatures in the range of 10 degrees Celsius to 180 degrees Celsius. The oleophilic rheology modifier may effectively bind with the solvent to create a gel-like structure with organic solvents with moderate to high polarity. A phyllosilicate clay that has been treated with a quaternary fatty acid amine may be used as the oleophilic rheology modifier.
Abstract:
The present invention relates to the use of zeolites or of agglomerates based on zeolites in order to improve the thermal stability of oils and the invention is targeted in particular at the use of these zeolitic compounds for stabilizing the oils or the formulations based on oils participating in the composition of refrigerants.
Abstract:
A system and method of processing an alloy ingot or other alloy workpiece to reduce thermal cracking and reduce friction between the workpiece and the forging die may generally comprise positioning a multi-layer pad between the workpiece and the forging die. An article for processing an alloy ingot or other alloy workpiece to reduce thermal cracking also is disclosed. The present disclosure also is directed to an alloy workpieces processed according to the methods described herein, and to articles of manufacture including or made from alloy workpieces made according to these methods.
Abstract:
An article comprises a substrate; a coating comprising a carbon composite; and a binding layer disposed between the substrate and the coating. The carbon composite comprises carbon and a binder containing one or more of the following: SiO2; Si; B; B2O3; a metal; or an alloy of the metal; and the metal comprises one or more of the following: aluminum; copper; titanium; nickel; tungsten; chromium; iron; manganese; zirconium; hafnium; vanadium; niobium; molybdenum; tin; bismuth; antimony; lead; cadmium; or selenium.
Abstract:
Additive packages including multifunctional additive molecules are disclosed, including, for example, organic medium intercalated with lubricant nanoparticles. The additive package may be greaseless or may he added to materials such as base oils or greases, greaseless materials, or anti-corrosives, for example. The additive package added to materials may form a coating or lubricant that may be added to a surface of an object.
Abstract:
A composition that includes solid lubricant nanoparticles and an organic medium is disclosed. Also disclosed are nanoparticles that include layered materials. A method of producing a nanoparticle by milling layered materials is provided. Also disclosed is a method of making a lubricant, the method including milling layered materials to form nanoparticles and incorporating the nanoparticles into a base to form a lubricant.
Abstract:
A system and method of processing an alloy ingot or other alloy workpiece to reduce thermal cracking and reduce friction between the workpiece and the forging die may generally comprise positioning a multi-layer pad between the workpiece and the forging die. An article for processing an alloy ingot or other alloy workpiece to reduce thermal cracking also is disclosed. The present disclosure also is directed to an alloy workpieces processed according to the methods described herein, and to articles of manufacture including or made from alloy workpieces made according to these methods.
Abstract:
A solid coating film (41) is formed on a surface of a screw member (25) of a temperature sensor (1), serving as an internal combustion engine attachment component, by use of a lubricating coating composition containing, as solid ingredients for forming the coating film (41), an organosilicon polymer having a polycarbosilane skeleton cross-linked by a metallic element, and a solid lubricant composed of at least one member selected from among molybdenum disulfide, boron nitride, graphite, and mica, and an organic solvent serving as the solvent for the solid ingredients. By virtue of the coating film (41), high seizure resistance can be attained.
Abstract:
A lubricant for hot-rolling tools in which an oxide-based laminar compound such as potassium tetrasilicic mica, sodium tetrasilicic mica, vermiculite, and bentonite, a boric acid compound such as boric acid, potassium borate, and sodium borate, and graphite are dispersed and dissolved in water, and in which the blending proportion of the oxide-based laminar compound to the boric acid compound is, in mass ratio, 10:90 to 70:30, and the content of the graphite is 1.0 to 4.5%. Applying this lubricant on the surface of the mandrel bar at the time of mandrel mill rolling enables a lubricating film to be formed on the surface of the bar and to exert excellent seizure resistance, and also allows the lubricant to be immune from remaining in the inner surface of tube.