Abstract:
A positive electrode for a nonaqueous electrolyte secondary battery according to the present invention includes particles A of a lamellar type lithium transition metal oxide and particles B of a spinel type lithium transition metal oxide, as a positive active material, at a ratio within the range of A:B=20:80 to 80:20 (weight ratio), in which a particle size distribution of the positive active material has a peak based on the particles A and a peak based on the particles B within the range of 1 to 50 μm. In the integrated distribution curve of the particle diameter, a particle diameter A(D50) at a degree of accumulation of the particles A of 50% and a particle diameter B(D50) at a degree of accumulation of the particles B of 50% satisfy the following expression (1), and a particle diameter A(D95) at a degree of accumulation of the particles A of 95% and a particle diameter B(D5) at a degree of accumulation of the particles B of 5% satisfy the following expression (2): B(D50)−A(D50)≧5 μm Expression (1) B(D5)>A(D95) Expression (2).
Abstract:
A post-deterioration performance estimating apparatus wherein a post-deterioration performance value indicates performance of an energy storage device. The apparatus includes a post-deterioration performance estimator is configured to electronically estimate the post-deterioration performance value at a deterioration point using (1) a relation between a cumulative operating period and a resistance value, (2) a relation between the resistance value and energy storage capacity, and (3) the cumulative operating period at the deterioration point. Alternatively, the post-deterioration performance estimator is configured to electronically estimate the post-deterioration performance value at a deterioration point using (1) a relation between an equilibrial capacity decreased amount, (2) a kinetic capacity decreased amount, and (3) a cumulative operating period at the deterioration point.
Abstract:
An energy storage apparatus includes an energy storage device and an outer case. The outer case includes a side wall portion disposed in an opposedly facing manner with a side surface of the energy storage device and a high rigidity member having higher rigidity than the side wall portion, the high rigidity member being disposed between the side wall portion and the energy storage device and mounted on the side wall portion.
Abstract:
An energy storage apparatus includes: an energy storage device; an outer covering; a fastening member which fixes the energy storage device to the outer covering; and an adhesive element disposed between the energy storage device and the outer covering. The adhesive element fixes the energy storage device to the outer covering at a position different from a position where the fastening member fixes the energy storage device to the outer covering.
Abstract:
Provided is a nonaqueous electrolyte secondary cell including: a case; an element housed in the case, including at least a positive electrode member, a negative electrode member and a separator; and an electrolyte solution poured into the case, wherein when in the state of the case being installed, in the direction perpendicular to the liquid surface of the electrolyte solution, the length between the highest position and the lowest position of the element is represented by L1 and the length between the liquid surface and the lowest position of the element is represented by L2, the ratio calculated with the formula L2/L1×100 is 10% or more and 100% or less.
Abstract:
An energy storage element includes a container that includes a container body including an opening and a cap part formed on the opening, an electrode assembly housed in the container, an electrode terminal, and a current collector which electrically connects the electrode terminal and the electrode assembly. The cap part of the container includes an outer surface including a protrusion part formed to protrude outward from the outer surface, and an inner surface including a recess part formed at a position corresponding to a position of the protrusion part.
Abstract:
An object of the present invention is to provide a nonaqueous electrolyte secondary battery including a monofluorotoluene-containing nonaqueous electrolyte with an improved overcharge-preventing effect. In a monofluorotoluene-containing nonaqueous electrolyte, when a specific fluorophosphate compound is contained, the overcharge-preventing effect of the monofluorotoluene can be improved. As a result, in the overcharged state of a nonaqueous electrolyte secondary battery including the monofluorotoluene-containing nonaqueous electrolyte, an increase in the battery surface temperature can be suppressed.
Abstract:
Disclosed is a negative electrode for an alkaline secondary battery, which can suppress elution of iron to improve the long-period storage property of the battery capacity even under conditions in which elution of iron in a substrate into an electrolyte solution tends to occur, and which can also suppress lowering of initial capacity and increase in internal resistance. Even under conditions in which the elution of iron in the substrate into an electrolyte solution tends to occur, including a case where there is a thin conductive protecting layer at the surface or where the conductive protecting layer has defects, by adding magnesium or a magnesium compound to the negative electrode for an alkaline secondary battery (excluding the case where magnesium is contained as a constituent element of a hydrogen storage alloy), the elution of iron can be suppressed, and thereby, the long-period storage property of the battery capacity can be improved and the lowering of the initial capacity and the increase in internal resistance can be suppressed.
Abstract:
An electric storage apparatus includes a plurality of electric storage devices arranged side by side, each electric storage device including a case having a plurality of walls and an electric storage element which is housed in the case. The apparatus also includes a sheet-shaped heat transfer member which is in contact with outer surfaces of short sidewalls of the plurality of electric storage devices.
Abstract:
An alkaline storage battery contains: a positive electrode; a negative electrode containing, as an active material, at least one of a metal capable of forming a dendrite and a metal compound thereof; and an alkaline electrolyte. The alkaline electrolyte contains a compound which is a chain saturated hydrocarbon at least partially having a hydrophilic functional group other than a hydroxyl group and having a molecular weight of 400 or more and less than 220000 in an amount of less than 15 g per 100 mL of the electrolyte.