Abstract:
A medical device includes an insertion tube, having a longitudinal axis and having a distal end adapted for insertion through a body passage into a cavity within a body of a patient. An electrode is located on the distal end of the insertion tube and is configured to contact tissue in the cavity. A resilient member is contained within the distal end of the insertion tube and is configured, when unconstrained, to cause the distal end to bend away from the longitudinal axis in a curved shape and to straighten toward the longitudinal axis when subjected to a force.
Abstract:
There is disclosed a trans-catheter cardiovascular device, comprising a composite material having gold nanoparticles embedded in a shape memory polymer. In an embodiment, the gold nanoparticles are surface-functionalized gold nanoparticles. In an embodiment, shape memory polymer is a cross-linked shape memory polymer. In various embodiments, the shape memory polymer forms one of a stent, an embolic coil, a venous filter, a vascular graft, and a cardiac septal defect closure device. Other embodiments are also disclosed.
Abstract:
An inflatable assembly that can be positioned within a patient, including an expandable membrane, an imaging member disposed within the expandable membrane, a diffuse reflector secured relative to the expandable membrane, and a light source disposed within the expandable membrane and positioned to direct light towards the diffuse reflector such that diffuse reflection of the light is directed towards a field of view of the imaging member.
Abstract:
A drive unit for a micro valve comprises a housing, a spring and at least one shape memory alloy element which is attached to the housing in a deflectable manner. The shape memory alloy element is loaded by the spring towards a deflected position and is movable in response to a temperature increase and the shape memory effect activated thereby, into a position which is at least less deflected against an increasing load by the spring. A normally closed micro valve includes a fluid housing, at least one valve seat, a sealing element opposite the valve seat, and a drive unit of the type mentioned above. The shape memory alloy element cooperates with the sealing element and exerts an operating force on the sealing element for closing and opening the valve seat with or against a compression spring force.
Abstract:
Cardiac ablation catheters and methods of use. In some embodiments the catheter includes at least one camera inside an expandable membrane for visualizing an ablation procedure.
Abstract:
A tissue-separating catheter assembly comprises a rotatable shaft, having a distal shaft portion, and a tissue separator device extending along the shaft. The tissue separator device has a distal separator part at the distal shaft portion movable between a retracted state, towards the distal shaft portion, and an outwardly extending, operational state, away from the distal shaft portion. A pivot joint may be used to pivotally connect the distal separator end to the distal shaft portion. The distal shaft portion may comprise a distally-facing transition surface at a proximal end of the distal shaft portion. First and second energizable tissue separator elements may be used at the transition surface and the tip of the device, respectively.
Abstract:
A belt structure includes a belt, a shape memory alloys, a processing module, and a driving module, wherein the driving module is electrically connected to the processing module. The shape memory alloys is disposed in the belt. The processing module generates a controlling signal according to a triggering signal. The driving module generates a driving signal according to the controlling signal, and supplies the driving signal to the shape memory alloys such that the shape memory alloys is deformed.
Abstract:
This invention relates to shape memory block copolymers comprising: at least one switching segment having a Ttrans from 10 to 70° C.; and at least one soft segment, wherein at least one of the switching segments is linked to at least one of the soft segments by at least one linkage, and wherein the copolymer transforms from a first shape to a second shape by application of a first stimulus and the copolymer transforms back to the first shape from the second shape by application of a second stimulus. The shape memory block copolymers may be biocompatible and biodegradable.
Abstract:
A belt structure includes a belt, a shape memory alloys, a processing module, and a driving module, wherein the driving module is electrically connected to the processing module. The shape memory alloys is disposed in the belt. The processing module generates a controlling signal according to a triggering signal. The driving module generates a driving signal according to the controlling signal, and supplies the driving signal to the shape memory alloys such that the shape memory alloys is deformed.
Abstract:
An endoscopic electrosurgical instrument is presented for encapsulating and resecting biologic tissue, such as a polyp, from an anatomical structure, such as a lumen. The instrument includes an encapsulation assembly which includes a snare coupled to an electrically non-conductive, shrinkable pouch in a drawstring-like configuration. The encapsulation assembly may be folded within the elongated cylindrical housing of the endoscopic instrument, positioned within the patient at the surgical site, and deployed for use. Once positioned over the polyp, the snare is tightened around the peduncle thereof, and the pouch is activated, thereby shrinking and encapsulating the polyp. The polyp may then be resected using conventional or electrosurgical techniques. The disclosed instrument may include surgical tools and/or electrosurgical electrodes for performing surgical procedures. The disclosed system may reduce the occurrence of undesirable arcing and may aid retrieval of resected tissue.