Abstract:
A memory device includes a plurality of gate electrode layers stacked on a substrate, a plurality of channel layers penetrating the plurality of gate electrode layers, a gate insulating layer between the plurality of gate electrode layers and the plurality of channel layers, and a common source line on the substrate adjacent to the gate electrode layers. The common source line includes a first part and a second part that are alternately arranged in a first direction and have different heights in a direction vertical to a top surface of the substrate. The gate insulating layer includes a plurality of vertical parts and a horizontal part. The plurality of vertical parts surrounds corresponding ones of the plurality of channel layers. The horizontal part extends parallel to a top surface of the substrate.
Abstract:
In one embodiment, the semiconductor device includes a stack of alternating interlayer insulating layers and conductive layers on a substrate. Each of the conductive layers extends in a first direction less than a previous one of the conductive layers to define a landing portion of the previous one of the conductive layers. An insulating plug is in one of the conductive layers under one of the landing portions, and a contact plug extends from an upper surface of the one of the landing portions.
Abstract:
A memory device includes a plurality of gate electrode layers stacked on a substrate, a plurality of channel layers penetrating the plurality of gate electrode layers, a gate insulating layer between the plurality of gate electrode layers and the plurality of channel layers, and a common source line on the substrate adjacent to the gate electrode layers. The common source line includes a first part and a second part that are alternately arranged in a first direction and have different heights in a direction vertical to a top surface of the substrate. The gate insulating layer includes a plurality of vertical parts and a horizontal part. The plurality of vertical parts surrounds corresponding ones of the plurality of channel layers. The horizontal part extends parallel to a top surface of the substrate.
Abstract:
A vertical non-volatile memory device includes a substrate including a cell region; a lower insulating layer on the substrate; a lower wiring pattern in the cell region having a predetermined pattern and connected to the substrate through the lower insulating layer; and a plurality of vertical channel layers extending in a vertical direction with respect to a top surface of the substrate in the cell region, spaced apart from one another in a horizontal direction with respect to the top surface of the substrate, and electrically connected to the lower wiring pattern. The memory device also includes a plurality of gate electrodes stacked alternately with interlayer insulating layers in the cell region in the vertical direction along a side wall of a vertical channel layer and formed to extend in a first direction along the horizontal direction.
Abstract:
In one embodiment, the semiconductor device includes a stack of alternating interlayer insulating layers and conductive layers on a substrate. Each of the conductive layers extends in a first direction less than a previous one of the conductive layers to define a landing portion of the previous one of the conductive layers. An insulating plug is in one of the conductive layers under one of the landing portions, and a contact plug extends from an upper surface of the one of the landing portions.
Abstract:
A non-volatile memory device having a vertical structure includes a NAND string having a vertical structure. The NAND string includes a plurality of memory cells, and at least one pair of first selection transistors arranged to be adjacent to a first end of the plurality of memory cells. A plurality of word lines are coupled to the plurality of memory cells of the NAND string. A first selection line is commonly connected to the at least one pair of first selection transistors of the NAND string.
Abstract:
Nonvolatile memory device, operating methods thereof, and memory systems including the same. In the operating method, a ground select line of a first string connected to a bit line may be floated. An erase prohibition voltage may be applied to a ground select line of a second string connected to the bit line. An erase operation voltage may be applied to the first and second strings.
Abstract:
A method of manufacturing a lead frame for a light-emitting device package and a light-emitting device package are provided. The method of manufacturing a lead frame for a light-emitting device package includes: preparing a base substrate for the lead frame; forming diffusion roughness on the base substrate; and forming a reflective plating layer on the diffusion roughness formed base substrate.
Abstract:
An inverter/charger integrated device is provided. The inverter/charger integrated device includes: a three-phase motor; a rectifying unit configured to rectify AC power for charging a battery and output the rectified AC power to a neutral point of the three-phase motor; a rectifier/inverter integrated unit configured to be connected to the rectifying unit and charge the battery; and a control unit configured to control the charging of the battery and an operation of the three-phase motor.
Abstract:
A non-volatile memory device having a vertical structure includes a NAND string having a vertical structure. The NAND string includes a plurality of memory cells, and at least one pair of first selection transistors arranged to be adjacent to a first end of the plurality of memory cells. A plurality of word lines are coupled to the plurality of memory cells of the NAND string. A first selection line is commonly connected to the at least one pair of first selection transistors of the NAND string.