Abstract:
A system and method of automatically detecting failure patterns for a semiconductor wafer process is provided. The method includes receiving a test data set collected from testing a plurality of semiconductor wafers, forming a respective wafer map for each of the wafers, determining whether each respective wafer map comprises one or more respective objects, selecting the wafer maps that are determined to comprise one or more respective objects, selecting one or more object indices for selecting a respective object in each respective selected wafer map, determining a plurality of object index values in each respective selected wafer map, selecting an object in each respective selected wafer map, determining a respective feature in each of the respective selected wafer, classifying a respective pattern for each of the respective selected wafer maps and using the respective wafer fingerprints to adjust one or more parameters of the semiconductor fabrication process.
Abstract:
A system and method for aligning a probe, such as a wafer-level test probe, with wafer contacts is disclosed. An exemplary method includes receiving a wafer containing a plurality of alignment contacts and a probe card containing a plurality of probe points at a wafer test system. A historical offset correction is received. Based on the historical offset correct, an orientation value for the probe card relative to the wafer is determined. The probe card is aligned to the wafer using the orientation value in an attempt to bring a first probe point into contact with a first alignment contact. The connectivity of the first probe point and the first alignment contact is evaluated. An electrical test of the wafer is performed utilizing the aligned probe card, and the historical offset correction is updated based on the orientation value.
Abstract:
The present disclosure provides a semiconductor manufacturing method. The method includes providing product data of a product, the product data including a sensitive product parameter; searching existing products according to the sensitive product parameter to identify a relevant product from the existing products; determining an initial value of a processing model parameter to the product using corresponding data of the relevant product; assigning the initial value of the processing model parameter to a processing model associated with a manufacturing process; thereafter, tuning a processing recipe using the processing model; and performing the manufacturing process to a semiconductor wafer using the processing recipe.
Abstract:
System and method for implementing wafer acceptance test (“WAT”) advanced process control (“APC”) are described. In one embodiment, the method comprises performing an inter-metal (“IM”) WAT on a plurality of processed wafer lots; selecting a subset of the plurality of wafer lots using a lot sampling process; and selecting a sample wafer group using the wafer lot subset, wherein IM WAT is performed on wafers of the sample wafer group to obtain IM WAT data therefore. The method further comprises estimating final WAT data for all wafers in the processed wafer lots from IM WAT data obtained for the sample wafer group and providing the estimated final WAT data to a WAT APC process for controlling processes.
Abstract:
A method includes providing a plurality of failure dies, and performing a chip probing on the plurality of failure dies to generate a data log comprising electrical characteristics of the plurality of failure dies. An automatic net tracing is performed to trace failure candidate nodes in the failure dies. A failure layer analysis is performed on results obtained from the automatic net tracing. Physical failure analysis (PFA) samples are selected from the plurality of failure dies using results obtained in the step of performing the failure layer analysis.
Abstract:
An apparatus and method for providing target thickness and surface profile uniformity control of a multi-head chemical mechanical polishing (CMP) process is disclosed. An exemplary method includes providing at least two wafers; determining a surface profile of each of the at least two wafers; determining an operation mode for a chemical mechanical polishing (CMP) process based on the surface profiles of the at least two wafers; determining a CMP polishing recipe for each of the at least two wafers based on the operation mode; and performing the CMP process on the at least two wafers based on the determined CMP polishing recipes.
Abstract:
System and method for implementing wafer acceptance test (“WAT”) advanced process control (“APC”) are described. In one embodiment, the method comprises performing a key process on a sample number of wafers of a lot of wafers; performing a key inline measurement related to the key process to produce metrology data for the wafers; predicting WAT data from the metrology data using an inline-to-WAT model; and using the predicted WAT data to tune a WAT APC process for controlling a tuning process or a process APC process.
Abstract:
A system and method for controlling a dosage profile is disclosed. An embodiment comprises separating a wafer into components of a grid array and assigning each of the grid components a desired dosage profile based upon a test to compensate for topology differences between different regions of the wafer. The desired dosages are decomposed into directional dosage components and the directional dosage components are translated into scanning velocities of the ion beam for an ion implanter. The velocities may be fed into an ion implanter to control the wafer-to-beam velocities and, thereby, control the implantation.
Abstract:
A method for providing a bin ratio forecast at an early stage of integrated circuit device manufacturing processes is disclosed. The method comprises collecting historical data from one or more processed wafer lots; collect measurement data from one or more skew wafer lots; generating an estimated baseline distribution from the collected historical data and collected measurement data; generating an estimated performance distribution based on one or more specified parameters and the generated estimated baseline distribution; determining a bin ratio forecast by applying a bin definition and a yield degradation factor estimation to the generated estimated performance distribution; determining one or more production targets based on the bin ratio forecast; and processing one or more wafers based on the one or more determined production targets.
Abstract:
A method for providing bin-based control when manufacturing integrated circuit devices is disclosed. The method comprises performing a plurality of processes on a plurality of wafer lots; determining a required bin quantity, an actual bin quantity, and a projected bin quantity; comparing the determined required bin quantity with the determined actual bin quantity and determined projected bin quantity; and modifying at least one of the plurality of processes on the plurality of wafer lots if the determined actual bin quantity and determined projected bin quantity fail to satisfy the determined required bin quantity.