Abstract:
Provided are methods of removing water adsorbed or bonded to a surface of a semiconductor substrate, and methods of depositing an atomic layer using the method of removing water described herein. The method of removing water includes applying a chemical solvent to the surface of a semiconductor substrate, and removing the chemical solvent from the surface of the semiconductor substrate.
Abstract:
Provided are methods of removing water adsorbed or bonded to a surface of a semiconductor substrate, and methods of depositing an atomic layer using the method of removing water described herein. The method of removing water includes applying a chemical solvent to the surface of a semiconductor substrate, and removing the chemical solvent from the surface of the semiconductor substrate.
Abstract:
In a non-volatile memory device and a method of manufacturing the non-volatile memory device, a tunnel insulating layer, a charge trapping layer, a dielectric layer and a conductive layer may be sequentially formed on a channel region of a substrate. The conductive layer may be patterned to form a gate electrode and spacers may be formed on sidewalls of the gate electrode. A dielectric layer pattern, a charge trapping layer pattern, and a tunnel insulating layer pattern may be formed on the channel region by an anisotropic etching process using the spacers as an etch mask. Sidewalls of the charge trapping layer pattern may be removed by an isotropic etching process to reduce the width thereof. Thus, the likelihood of lateral diffusion of electrons may be reduced or prevented in the charge trapping layer pattern and high temperature stress characteristics of the non-volatile memory device may be improved.
Abstract:
In a non-volatile memory device and a method of manufacturing the non-volatile memory device, a tunnel insulating layer, a charge trapping layer, a dielectric layer and a conductive layer may be sequentially formed on a channel region of a substrate. The conductive layer may be patterned to form a gate electrode and spacers may be formed on sidewalls of the gate electrode. A dielectric layer pattern, a charge trapping layer pattern, and a tunnel insulating layer pattern may be formed on the channel region by an anisotropic etching process using the spacers as an etch mask. Sidewalls of the charge trapping layer pattern may be removed by an isotropic etching process to reduce the width thereof. Thus, the likelihood of lateral diffusion of electrons may be reduced or prevented in the charge trapping layer pattern and high temperature stress characteristics of the non-volatile memory device may be improved.
Abstract:
A method of manufacturing a non-volatile memory device includes forming a tunnel insulating layer on a substrate, forming a conductive pattern on the tunnel insulating layer, forming a lower dielectric layer on the conductive pattern, performing a first heat treatment process to density the lower dielectric layer, and forming a middle dielectric layer having an energy band gap smaller than that of the lower dielectric layer on the first heat-treated lower dielectric layer. The method further includes forming an upper dielectric layer including a material substantially identical to that of the lower dielectric layer on the middle dielectric layer, performing a second heat treatment process to densify the middle dielectric layer and the upper dielectric layer and forming a conductive layer on the second heat-treated upper dielectric layer.
Abstract:
A method of fabricating a nonvolatile memory device includes forming a charge tunneling layer on a semiconductor substrate, forming a charge trapping layer on the charge tunneling layer, forming a first charge blocking layer on the charge trapping layer by supplying a metal source gas and a first oxidizing gas onto the charge trapping layer, forming a second charge blocking layer on the first charge blocking layer by supplying a metal source gas and a second oxidizing gas onto the first charge blocking layer, wherein the second oxidizing gas has a higher oxidizing power as compared to the first oxidizing gas, and forming a gate electrode layer on the second charge blocking layer.
Abstract:
The present invention can provide methods of forming a layer including lanthanum by utilizing a lanthanum precursor existing in a liquid phase at a room temperature. The present invention can further provide methods of forming layers including lanthanum on objects and methods of manufacturing a capacitor.
Abstract:
A semiconductor device and a method for forming the same. A dielectric layer is formed on a semiconductor substrate or on a lower electrode of a capacitor. Vacuum annealing is performed on the dielectric layer. Thus, impurities remaining in the dielectric layer can be effectively removed, and the dielectric layer can be densified. As a result, the electrical characteristics of the semiconductor device are improved. For example, the leakage current characteristics of the dielectric layer are improved and capacitance is increased.
Abstract:
A capacitor including a dielectric structure, a lower electrode may be formed on a substrate. The dielectric structure may be formed on the lower electrode, and may include a first thin film, which may improve a morphology of the dielectric structure, and a second thin film, which may have at least one of an EOT larger than that of the first thin film and a dielectric constant higher than that of the first thin film. An upper electrode may be formed on the dielectric structure, and the dielectric structure may have an improved morphology and/or a higher dielectric constant.
Abstract:
The present invention provides methods of forming metal thin films, lanthanum oxide films and high dielectric films. Compositions of metal thin films, lanthanum oxide films and high dielectric films are also provided. Further provided are semiconductor devices comprising the metal thin films, lanthanum oxide films and high dielectric films provided herein.