摘要:
There is provided a method for preparing a pillared layered material, designated MCM-36, with a characteristic X-ray diffraction pattern. Upon calcination of the swollen, non-pillared form of this material, the layers collapse and condense upon one another in a somewhat disordered fashion to form a non-swellable material. However, when the swollen layered material is intercalated with polymeric oxide pillars, the layer separation is maintained, even after calcination. A quaternary ammonium silicate, such as tetramethylammonium silicate, is used as a pillaring agent for treating the swollen material.
摘要:
There is provided a process for demetallizing hydrocarbon feedstocks, such as resids or shale oil. The process uses a catalyst comprising at least one hydrogenation metal, such as nickel and molybdenum, and an ultra-large pore oxide material. This ultra-large pore oxide material may have uniformly large pores, e.g., having a size of about 40 Angstroms in diameter.
摘要:
There is provided a method for the removal of residual organic swelling agent from pillared layered materials by treating such materials with acid.
摘要:
This invention relates to aggregates of small particles of synthetic faujasite zeolite. Small primary particles of zeolite are clustered into larger secondary particles. The observable average width of the primary particles may be 0.3 micron or less and the observable average width of the secondary particles may be 0.8 micron or more. The silica to alumina ratio of the zeolite may be less than 4:1.
摘要:
This disclosure relates to a process for manufacturing a mono-cycloalkyl-substituted aromatic compound, said process comprising contacting a feedstock comprising an aromatic compound and hydrogen under hydroalkylation reaction conditions with a catalyst system comprising a molecular sieve, wherein said molecular sieve comprises a framework of tetrahedral atoms bridged by oxygen atoms, the tetrahedral atom framework being defined by a unit cell with atomic coordinates in nanometers shown in Table 2.
摘要:
The crystalline molecular sieve material EMM-7 has, in its as-synthesized form, an X-ray diffraction pattern including d-spacing maxima substantially as set forth in Table 1: TABLE 1 Interplanar d-Spacing (Å)Relative Intensity, I/Io × 100 8.40 ± 0.2w-m 6.80 ± 0.2w-s 4.46 ± 0.1m-s 3.73 ± 0.1m-s 3.68 ± 0.1m-s 3.40 ± 0.1 s-vs wherein “vs” means very strong (greater than 60 to 100), “s” means strong (greater than 40 to 60), “m” means medium (greater than 20 to 40) and “w” means weak (0 to 20).
摘要:
A method for synthesizing MCM-48 includes combining an inorganic silica reagent, an alkylammonium hydroxide and halide-containing surfactant to form a reaction mixture which is maintained under sufficient conditions to form a crystalline MCM-48 product. In a preferred embodiment, the organic silica reagent and the alkylammonium hydroxide are combined in the agueous medium to form a first reactions mixture and the halide-containing surfactant is then added to the first mixture so as to form a second reaction mixture which is then reacted to form the MCM-48 product. The crystalline MCM-48 material according to the invention can be functionalized by adding aluminum. The crystalline MCM-48 product produced by the process of this invention possesses an X-ray diffraction pattern indicative of a cubic unit cell with Ia3d symmetry.
摘要:
There is provided a process for converting organic compounds using a catalyst comprising a pillared, layered crystalline oxide material. This material may be prepared by intercepting a swellable layered oxide before calcination. The intercepted material is swollen and pillared. If the material is not intercepted in this manner, it is transformed into a zeolite by calcination. The pillared material may have a large degree of catalytic activity, and it may have rather porous layers.
摘要:
There is provided a porous material. A process for preparing this material involves adding an amphiphilic compound to the reaction mixture for preparing a crystalline oxide. The amphiphilic compound may be a quaternary ammonium cationic surfactant. These surfactants may be in the form of lamellar liquid crystals, and may function as templates for the formation of the present mesoporous oxide materials.