摘要:
A semiconductor laser comprising a semiconductor layer sequence (2) comprising an active zone (3) for generating electromagnetic radiation, and an absorber zone for attenuating higher modes. The absorber zone is arranged within the semiconductor layer sequence (2) or adjoins the semiconductor layer sequence (2).
摘要:
The semiconductor layer structure includes an active layer (6) and a superlattice (9) composed of stacked layers (9a, 9b) of III-V compound semiconductors of a first (a) and at least one second type (b). Adjacent layers of different types in the superlattice (9) differ in composition with respect to at least one element. The layers (9a, 9b) have predefined layer thicknesses, such that the layer thicknesses of layers (9a) of the first type (a) and of the layers (9b) of the second type (b) increase from layer to layer with increasing distance from an active layer (6). An increasing layer thickness within the layers of the first and the second type (a, b) is suitable for adapting the electrical, optical and epitaxial properties of the superlattice (9) to given requirements in the best possible manner.
摘要:
An optoelectronic semiconductor chip, the latter includes a carrier and a semiconductor layer sequence grown on the carrier. The semiconductor layer sequence is based on a nitride-compound semiconductor material and contains at least one active zone for generating electromagnetic radiation and at least one waveguide layer, which indirectly or directly adjoins the active zone. A waveguide being formed. In addition, the semiconductor layer sequence includes a p-cladding layer adjoining the waveguide layer on a p-doped side and/or an n-cladding layer on an n-doped side of the active zone. The waveguide layer indirectly or directly adjoins the cladding layer. An effective refractive index of a mode guided in the waveguide is in this case greater than a refractive index of the carrier.
摘要:
An edge emitting semiconductor laser (1) is specified, comprising an n-side waveguide region (21) and a p-side waveguide region (22); an active zone (20) for generating electromagnetic radiation; at least one reflection layer (24) in the n-side waveguide region (21), wherein the active zone (20) is arranged between the two waveguide regions (21, 22), the thickness of the n-side waveguide region (21) is greater than that of the p-side waveguide region (22), the refractive index of the reflection layer (24) is less than the refractive index of the n-side waveguide region (21) adjoining the reflection layer (24).
摘要:
An edge emitting semiconductor laser (1) is specified, comprising an n-side waveguide region (21) and a p-side waveguide region (22); an active zone (20) for generating electromagnetic radiation; at least one reflection layer (24) in the n-side waveguide region (21), wherein the active zone (20) is arranged between the two waveguide regions (21, 22), the thickness of the n-side waveguide region (21) is greater than that of the p-side waveguide region (22), the refractive index of the reflection layer (24) is less than the refractive index of the n-side waveguide region (21) adjoining the reflection layer (24).
摘要:
An optoelectronic component including a semiconductor layer structure, the semiconductor layer structure including a superlattice composed of stacked layers of III-V compound semiconductors of a first and at least one second type. Adjacent layers of different types in the superlattice differ in composition with respect to at least one element, at least two layers of the same type having a different content of the at least one element, the content of the at least one element is graded within a layer of the superlattice, and the layers of the superlattice contain dopants in predefined concentrations, with the superlattice comprising layers that are doped with different dopants. In this way, the electrical, optical and epitaxial properties of the superlattice can be adapted in the best possible manner to given requirements, particularly epitaxial constraints.
摘要:
A method for laterally dividing a semiconductor wafer (1) comprises the method steps of: providing a growth substrate (2); epitaxially growing a semiconductor layer sequence (3), which comprises a functional semiconductor layer (5), onto the growth substrate (2); applying a mask layer (10) to partial regions of the semiconductor layer sequence (3) in order to produce masked regions (11) and unmasked regions (12); implanting ions through the unmasked regions (12) in order to produce implantation regions (13) in the semiconductor wafer (1); and dividing the semiconductor wafer (1) along the implantation regions (13), wherein the growth substrate (2) or at least one part of the growth substrate (2) is separated from the semiconductor wafer.
摘要:
An optoelectronic semiconductor body comprises a substrate (10), which has on a first main area (12) an epitaxial semiconductor layer sequence (20), suitable for generating electromagnetic radiation, in a first region (14) and a first trench (24) in a second region (22) adjacent to the first region (14), and at least one second trench (30) arranged outside the first region (14). The invention also relates to an optoelectronic semiconductor body and a method for producing an optoelectronic semiconductor body.
摘要:
A semiconductor chip with a semiconductor body has a semiconductor layer sequence with an active region provided for generating radiation. A mirror structure that includes a mirror layer and a dielectric layer that is arranged at least in regions between the mirror layer and semiconductor body is arranged on the semiconductor body.
摘要:
A polyphase converter circuit having p≧3 phases (R, Y, B) and a converter circuit element provided for each phase (R, Y, B) is specified, each converter circuit element having a rectifier unit, a DC voltage circuit which is connected to the rectifier unit and an inverter unit which is connected to the DC voltage circuit. In addition, a first AC voltage output of each inverter unit forms a phase connection, and second AC voltage outputs of the inverter units are star-connected. In order to produce harmonics which are as low as possible with respect to the fundamental of the voltage and the current of an electrical AC voltage system which is connected on the input side to the converter circuit, n transformers are provided, each having a primary winding and m three-phase secondary windings, where n≧2 and m≧3. Furthermore, p sets of secondary windings are provided, each set of secondary windings being formed by in each case m p three-phase secondary windings of each transformer, and each set of secondary windings with the associated secondary windings being connected to the rectifier unit of a respective converter circuit element.