摘要:
Non-planar semiconductor devices having group III-V material active regions with multi-dielectric gate stacks are described. For example, a semiconductor device includes a hetero-structure disposed above a substrate. The hetero-structure includes a three dimensional group III-V material body with a channel region. A source and drain material region is disposed above the three-dimensional group III-V material body. A trench is disposed in the source and drain material region separating a source region from a drain region, and exposing at least a portion of the channel region. A gate stack is disposed in the trench and on the exposed portion of the channel region. The gate stack includes first and second dielectric layers and a gate electrode.
摘要:
Deep gate-all-around semiconductor devices having germanium or group III-V active layers are described. For example, a non-planar semiconductor device includes a hetero-structure disposed above a substrate. The hetero-structure includes a hetero-junction between an upper layer and a lower layer of differing composition. An active layer is disposed above the hetero-structure and has a composition different from the upper and lower layers of the hetero-structure. A gate electrode stack is disposed on and completely surrounds a channel region of the active layer, and is disposed in a trench in the upper layer and at least partially in the lower layer of the hetero-structure. Source and drain regions are disposed in the active layer and in the upper layer, but not in the lower layer, on either side of the gate electrode stack.
摘要:
Embodiments of the present disclosure provide contact techniques and configurations for reducing parasitic resistance in nanowire transistors. In one embodiment, an apparatus includes a semiconductor substrate, an isolation layer formed on the semiconductor substrate, a channel layer including nanowire material formed on the isolation layer to provide a channel for a transistor, and a contact coupled with the channel layer, the contact being configured to surround, in at least one planar dimension, nanowire material of the channel layer and to provide a source terminal or drain terminal for the transistor.
摘要:
Transistors for high voltage and high frequency operation. A non-planar, polar crystalline semiconductor body having a top surface disposed between first and second opposite sidewalls includes a channel region with a first crystalline semiconductor layer disposed over the first and second sidewalls. The first crystalline semiconductor layer is to provide a two dimensional electron gas (2DEG) within the channel region. A gate structure is disposed over the first crystalline semiconductor layer along at least the second sidewall to modulate the 2DEG. First and second sidewalls of the non-planar polar crystalline semiconductor body may have differing polarity, with the channel proximate to a first of the sidewalls. The gate structure may be along a second of the sidewalls to gate a back barrier. The polar crystalline semiconductor body may be a group III-nitride formed on a silicon substrate with the (10 10) plane on a (110) plane of the silicon.
摘要:
Architectures and techniques for co-integration of heterogeneous materials, such as group III-V semiconductor materials and group IV semiconductors (e.g., Ge) on a same substrate (e.g. silicon). In embodiments, multi-layer heterogeneous semiconductor material stacks having alternating nanowire and sacrificial layers are employed to release nanowires and permit formation of a coaxial gate structure that completely surrounds a channel region of the nanowire transistor. In embodiments, individual PMOS and NMOS channel semiconductor materials are co-integrated with a starting substrate having a blanket layers of alternating Ge/III-V layers. In embodiments, vertical integration of a plurality of stacked nanowires within an individual PMOS and individual NMOS device enable significant drive current for a given layout area.
摘要:
Embodiments of the present invention describe a method of fabricating low resistance contact layers on a semiconductor device. The semiconductor device comprises a substrate having source and drain regions. The substrate is alternatingly exposed to a first precursor and a second precursor to selectively deposit an amorphous semiconductor layer onto each of the source and drain regions. A metal layer is then deposited over the amorphous semiconductor layer on each of the source and drain regions. An annealing process is then performed on the substrate to allow the metal layer to react with amorphous semiconductor layer to form a low resistance contact layer on each of the source and drain regions. The low resistance contact layer on each of the source and drain regions can be formed as either a silicide layer or germanide layer depending on the type of precursors used.
摘要:
System on Chip (SoC) solutions integrating an RFIC with a PMIC using a transistor technology based on group III-nitrides (III-N) that is capable of achieving high Ft and also sufficiently high breakdown voltage (BV) to implement high voltage and/or high power circuits. In embodiments, the III-N transistor architecture is amenable to scaling to sustain a trajectory of performance improvements over many successive device generations. In embodiments, the III-N transistor architecture is amenable to monolithic integration with group IV transistor architectures, such as planar and non-planar silicon CMOS transistor technologies. Planar and non-planar HEMT embodiments having one or more of recessed gates, symmetrical source and drain, regrown source/drains are formed with a replacement gate technique permitting enhancement mode operation and good gate passivation.
摘要:
Transistors for high voltage and high frequency operation. A non-planar, polar crystalline semiconductor body having a top surface disposed between first and second opposite sidewalls includes a channel region with a first crystalline semiconductor layer disposed over the first and second sidewalls. The first crystalline semiconductor layer is to provide a two dimensional electron gas (2DEG) within the channel region. A gate structure is disposed over the first crystalline semiconductor layer along at least the second sidewall to modulate the 2DEG. First and second sidewalls of the non-planar polar crystalline semiconductor body may have differing polarity, with the channel proximate to a first of the sidewalls. The gate structure may be along a second of the sidewalls to gate a back barrier. The polar crystalline semiconductor body may be a group III-nitride formed on a silicon substrate with the (1010) plane on a (110) plane of the silicon.
摘要:
Non-planar semiconductor devices having group III-V material active regions with multi-dielectric gate stacks are described. For example, a semiconductor device includes a hetero-structure disposed above a substrate. The hetero-structure includes a three-dimensional group III-V material body with a channel region. A source and drain material region is disposed above the three-dimensional group III-V material body. A trench is disposed in the source and drain material region separating a source region from a drain region, and exposing at least a portion of the channel region. A gate stack is disposed in the trench and on the exposed portion of the channel region. The gate stack includes first and second dielectric layers and a gate electrode.
摘要:
Non-planar semiconductor devices having group III-V material active regions with multi-dielectric gate stacks are described. For example, a semiconductor device includes a hetero-structure disposed above a substrate. The hetero-structure includes a three-dimensional group III-V material body with a channel region. A source and drain material region is disposed above the three-dimensional group III-V material body. A trench is disposed in the source and drain material region separating a source region from a drain region, and exposing at least a portion of the channel region. A gate stack is disposed in the trench and on the exposed portion of the channel region. The gate stack includes first and second dielectric layers and a gate electrode.