Abstract:
A dry non-plasma treatment system and method for removing oxide material is described. The treatment system is configured to provide chemical treatment of one or more substrates, wherein each substrate is exposed to a gaseous chemistry under controlled conditions including surface temperature and gas pressure. Furthermore, the treatment system is configured to provide thermal treatment of each substrate, wherein each substrate is thermally treated to remove the chemically treated surfaces on each substrate.
Abstract:
A plasma processing system includes a processing chamber, a substrate holder configured to hold a substrate for plasma processing, and a gas injection assembly. The gas injection assembly includes a first evacuation port located substantially in a center of the gas injection assembly and configured to evacuate gases from a central region of the substrate, and a gas injection system configured to inject gases in the process chamber. The plasma processing system also includes a second evacuation port configured to evacuate gases from a peripheral region surrounding the central region of the substrate.
Abstract:
A plasma processing system includes a processing chamber, a substrate holder configured to hold a substrate for plasma processing, and a gas injection assembly. The gas injection assembly includes a first evacuation port located substantially in a center of the gas injection assembly and configured to evacuate gases from a central region of the substrate, and a gas injection system configured to inject gases in the process chamber. The plasma processing system also includes a second evacuation port configured to evacuate gases from a peripheral region surrounding the central region of the substrate.
Abstract:
A gas injection system (10) is provided for a processing reactor and a method is provided for reducing transport of particulate material onto a substrate (12) during process gas start-up. The system (10) includes a two-way valve (40) having an inlet (42) connected to a mass flow controller (30), and first and second outlets (44, 46). The system (10) includes a principle gas feed line (50) connecting the first outlet (44) of the valve (40) to an inject plate (24) within a vacuum chamber (20) at a position above a substrate (12), and a start-up line (60) connecting the second outlet (46) to an orifice (62) in the chamber (20) at a position not above the substrate (12). Alternatively, the system includes a valve having an inlet connected to the mass flow controller, and a first outlet. In the alternative system, a first gas feed line connects the first outlet of the valve to the inject plate (24), and an acoustical dampening device is provided within the first gas feed line.
Abstract:
A substrate holder for supporting a substrate in a processing system includes a temperature controlled support base having a first temperature, and a substrate support opposing the temperature controlled support base and configured to support the substrate. Also included is one or more heating elements coupled to the substrate support and configured to heat the substrate support to a second temperature above the first temperature, and a thermal insulator disposed between the temperature controlled support base and the substrate support. The thermal insulator includes a non-uniform spatial variation of the heat transfer coefficient (W/m2-K) through the thermal insulator between the temperature controlled support base and the substrate support.
Abstract translation:用于在处理系统中支撑衬底的衬底保持器包括具有第一温度的温度控制的支撑基座和与温度受控的支撑基座相对并且被配置为支撑衬底的衬底支撑件。 还包括一个或多个加热元件,其耦合到衬底支撑件并且被配置为将衬底支撑件加热到高于第一温度的第二温度,以及设置在温度受控支撑基底和衬底支撑件之间的热绝缘体。 热绝缘体包括通过温度受控支撑基底和基底支撑件之间的热绝缘体的传热系数(W / m 2 SUP -K)的不均匀的空间变化。
Abstract:
An equipment status monitoring system having at least one multi-modal resonator included as a part of a semiconductor processing system and a power source coupled to the at least one multi-modal resonator. The power source is configured to produce a microwave excitation signal corresponding to at least one mode of the multi-modal resonator and emit the microwave excitation signal into the semiconductor processing chamber. The system includes a detector coupled to the at least one multi-modal resonator and configured to measure the excitation signal. The system includes a control system connected to the detector and configured to provide a comparison of at least one measured excitation signal with a normal excitation signal corresponding to a normal status.
Abstract:
A wall film monitoring system includes first and second microwave mirrors in a plasma processing chamber each having a concave surface. The concave surface of the second mirror is oriented opposite the concave surface of the first mirror. A power source is coupled to the first mirror and configured to produce a microwave signal. A detector is coupled to at least one of the first mirror and the second mirror and configured to measure a vacuum resonance voltage of the microwave signal. A control system is connected to the detector that compares a first measured voltage and a second measured voltage and determines whether the second voltage exceeds a threshold value. A method of monitoring wall film in a plasma chamber includes loading a wafer in the chamber, setting a frequency of a microwave signal output to a resonance frequency, and measuring a first vacuum resonance voltage of the microwave signal. The method includes processing the wafer, measuring a second vacuum resonance voltage of the microwave signal, and determining whether the second measured voltage exceeds a threshold value using the first measured voltage as a reference value.
Abstract:
A plasma processing system including a process chamber, a substrate holder provided within the process chamber, and a gas injection system configured to supply a first gas and a second gas to the process chamber. The system includes a controller that controls the gas injection system to continuously flow a first gas flow to the process chamber and to pulse a second gas flow to the process chamber at a first time. The controller pulses a RF power to the substrate holder at a second time. A method of operating a plasma processing system is provided that includes adjusting a background pressure in a process chamber, where the background pressure is established by flowing a first gas flow using a gas injection system, and igniting a processing plasma in the process chamber. The method includes pulsing a second gas flow using the gas injection system at a first time, and pulsing a RF power to a substrate holder at a second time.
Abstract:
A method and system are provided for monitoring erosion of system components in a plasma processing system. The system components contain emitters that are capable of producing characteristic fluorescent light emission when exposed to a plasma. The method utilizes optical emission to monitor fluorescent light emission from the emitters for determining system component status. The method can evaluate erosion of system components in a plasma, by monitoring fluorescent light emission from the emitters. Consumable system components that can be monitored using the method include rings, shields, electrodes, baffles, and liners.
Abstract:
A plasma processing apparatus for spatial control of dissociation and ionization and a method for controlling the dissociation and ionization in the plasma. An aspect of the present invention provides a plasma processing apparatus for spatial control of dissociation and ionization includes a process chamber, a plasma generating system configured and arranged to produce a plasma in the process chamber, a substrate holder configured to hold a substrate during substrate processing, a gas source configured to introduce gases into the process chamber, a pressure-control system for maintaining a selected pressure within the process chamber, and, a plurality of partitions dividing the internal volume of the process chamber into one or more spatial zones. These partitions extend from a wall of the process chamber toward said substrate holder.