Abstract:
Various embodiments include methods and integrated circuit structures. One method includes masking a structure with a mask to cover at least a portion of the structure under the mask, selectively implanting a material through a semiconductor layer and into a buried insulator layer forming an implant region. The implant region is substantially parallel to and below an upper surface of the structure. The method may also include masking an additional portion of the structure; etching a set of access ports though the semiconductor layer and partially through the insulator layer into the implant region; etching at least one tunnel below the upper surface of the structure in the implant region using the set of access; and depositing a conductor into the at least one tunnel and the set of access ports.
Abstract:
A method for forming a gate tie-down includes exposing an active area to form trench contact openings and forming trench contacts therein. An etch stop layer is formed on the trench contacts and on spacers of adjacent gate structures. An interlevel dielectric (ILD) is deposited to fill over the etch stop layer. The ILD and the etch stop layer on one side of the gate structure are opened up to provide an exposed etch stop layer portion. The gate structure is recessed to expose a gate conductor. The exposed etch stop layer portion is removed. A conductive material is deposited to provide a self-aligned contact down to the trench contact on the one side of the gate structure, to form a gate contact down to the gate conductor and to form a horizontal connection within the ILD over the active area between the gate conductor and the self-aligned contact.
Abstract:
A gate tie-down structure includes a gate structure including a gate conductor and gate spacers and inner spacers formed on the gate spacers. Trench contacts are formed on sides of the gate structure. An interlevel dielectric (ILD) has a thickness formed over the gate structure. A horizontal connection is formed within the thickness of the ILD over an active area connecting the gate conductor and one of the trench contacts over one of the inner spacers.
Abstract:
The present disclosure relates to semiconductor structures and, more particularly, to middle of the line self-aligned direct pattern contacts and methods of manufacture. The structures described herein include: at least one gate structure with a metallization and source/drain regions; a source/drain contact in electrical connection with the source/drain regions, respectively; and a contact structure with a re-entrant profile in electrical connection with the source/drain contact and the metallization of the at least one gate structure, respectively.
Abstract:
Various embodiments relate to gate-all-around (GAA) transistors and methods of forming such transistors. In some embodiments, a method performed on a precursor structure includes selectively removing a sacrificial nanosheet to open a vertical gap between a pair of semiconductor nanosheets; forming a first work function metal to surround the precursor nanosheet stack and fin, the first work function metal filling the vertical gap between the pair of semiconductor nano sheets; selectively removing first work function metal surrounding the fin while preserving an entirety of first work function metal surrounding the nanosheet stack; and forming a second work function metal: over a remaining portion of the first work function metal on nanosheet stack, and surrounding the fin, where first work function metal includes a different material than second work function metal.
Abstract:
One illustrative method disclosed includes, among other things, forming at least one layer of sacrificial material above an underlying conductive structure, forming a sacrificial contact structure in the at least one layer of sacrificial material and forming at least one layer of insulating material around the sacrificial contact structure. In this example, the method also includes performing at least one process operation to expose an upper surface of the sacrificial contact structure, removing the sacrificial contact structure so as to form a contact opening that exposes the upper surface of the underlying conductive structure and forming a final contact structure in the contact opening, the final contact structure conductively contacting the underlying conductive structure.
Abstract:
One illustrative method disclosed herein may include forming a contact etching structure in a layer of insulating material positioned above first and second lower conductive structures, wherein at least a portion of the contact etching structure is positioned laterally between the first and second lower conductive structures, forming a first conductive line and a first conductive contact adjacent a first side of the contact etching structure and forming a second conductive line and a second conductive contact adjacent a second side of the contact etching structure, wherein a spacing between the first and second conductive lines is approximately equal to a dimension of the contact etching structure.
Abstract:
One illustrative method disclosed includes, among other things, forming a conductive source/drain metallization structure adjacent a gate, forming a gate contact opening that exposes at least a portion of a front face of the conductive source/drain metallization structure and a portion of an upper surface of a gate structure of the gate. In this example, the method further includes forming an internal insulating spacer within the gate contact opening that is positioned on and in contact with the exposed portion of the front face, wherein the spacer leaves at least a portion of the upper surface of the gate structure exposed, and forming a conductive gate contact structure (CB) in the conductive gate contact opening.
Abstract:
A method for forming a gate tie-down includes opening up a cap layer and recessing gate spacers on a gate structure to expose a gate conductor; forming inner spacers on the gate spacers; etching contact openings adjacent to sides of the gate structure down to a substrate below the gate structures; and forming trench contacts on sides of the gate structure. An interlevel dielectric (ILD) is deposited on the gate conductor and the trench contacts and over the gate structure. The ILD is opened up to expose the trench contact on one side of the gate structure and the gate conductor. A second conductive material provides a self-aligned contact down to the trench contact on the one side and to form a gate contact down to the gate conductor and a horizontal connection within the ILD over an active area between the gate conductor and the self-aligned contact.
Abstract:
A method for forming a gate tie-down includes opening up a cap layer and recessing gate spacers on a gate structure to expose a gate conductor; forming inner spacers on the gate spacers; etching contact openings adjacent to sides of the gate structure down to a substrate below the gate structures; and forming trench contacts on sides of the gate structure. An interlevel dielectric (ILD) is deposited on the gate conductor and the trench contacts and over the gate structure. The ILD is opened up to expose the trench contact on one side of the gate structure and the gate conductor. A second conductive material provides a self-aligned contact down to the trench contact on the one side and to form a gate contact down to the gate conductor and a horizontal connection within the ILD over an active area between the gate conductor and the self-aligned contact.