摘要:
A transducer (800) is provided where a membrane (830) is formed over a front substrate (615); and a piezoelectric layer (820) is formed over the membrane (830) at an active portion (821) and peripheral portions located adjacent the active portion (821). A patterned conductive layer including first and second electrodes (840, 845) is formed over the piezoelectric layer (820). Further, a back substrate structure is provided having supports (822, 824) located at the peripheral portions adjacent the active portion (821). The height (826) of the supports (822, 824) is greater than a combined height (828) of the patterned piezoelectric layer and the patterned conductive layer. Many transducers may be connected to form an array, where a controller may be provided for controlling the array, such as steering a beam of the array, and processing signals received by the array, for presence or motion detection and/or imaging, for example.
摘要:
A transducer (800) is provided where a membrane (830) is formed over a front substrate (615); and a piezoelectric layer (820) is formed over the membrane (830) at an active portion (821) and peripheral portions located adjacent the active portion (821). A patterned conductive layer including first and second electrodes (840, 845) is formed over the piezoelectric layer (820). Further, a back substrate structure is provided having supports (822, 824) located at the peripheral portions adjacent the active portion (821). The height (826) of the supports (822, 824) is greater than a combined height (828) of the patterned piezoelectric layer and the patterned conductive layer. Many transducers may be connected to form an array, where a controller may be provided for controlling the array, such as steering a beam of the array, and processing signals received by the array, for presence or motion detection and/or imaging, for example.
摘要:
A capacitive ultrasound transducer includes a first electrode, a second electrode, and a third electrode, the third electrode including a central region disposed in collapsibly spaced relation with the first electrode, and a peripheral region disposed outward of the central region and disposed in collapsibly spaced relation with the second electrode. The transducer further includes a layer of a high dielectric constant material disposed between the third electrode and the first electrode, and between the third electrode and the second electrode. The transducer may be operable in a collapsed mode wherein the peripheral region of the third electrode oscillates relative to the second electrode, and the central region of the third electrode is fully collapsed with respect to the first electrode such that the dielectric layer is sandwiched therebetween. Piezoelectric actuation, such as d31 and d33 mode piezoelectric actuation, may further be included. A medical imaging system includes an array of such capacitive ultrasound transducers disposed on a common substrate.
摘要:
The microelectromechanical system (MEMS) element (101) comprises a first electrode (310 that is present on a surface of sustate(30) an a movable element (40). This overlies at least partially the first electrode (31) and comprises a piezo-electric actuator, which movable element (40) is movable towards and from the substrate (30) by application of an actuation voltage between a first and a second position, in which first position it is separated from the substrate (30) by a gap. Herein the piezoelectric actuator comprises a piezoelectric layer (25) that is on opposite surfaces provided with a second and a third electrode (21,22) respectively, said second electrode (21) facing the substrate (30) and said third electrode (22) forming an input electrode of the MEMS element (101), so that a current path between through the MEMS element (101) comprises the piezoelectric layer (25) and the tunable gap.
摘要:
Skin-contact products with a transpiration function such as medical devices or medicinal products, of which face masks, aspirators, ventilators, breast pumps or wound dressings are examples are described especially a skin-contact product with a transpiration function with an improved microclimate at a patient interface material-skin contact area. In an embodiment a material system is described that comprises a hydrophobic silicone base material and a hydrophilic silicone material that is combined with the hydrophobic base material.
摘要:
The present invention relates to a method of generating oxygen. The method addresses the objects of reducing the servicing work and improving the purity of the generated oxygen. According to the invention, the method comprises the steps of: providing an oxygen comprising gas at a primary side of a dense voltage drivable membrane (12); applying a voltage between a conductive element at the primary side of the membrane (12) and a conductive element at a secondary side of the membrane (12), the conductive elements being electrically connected to the membrane (12), wherein a plasma (18, 20) is generated at at least one of the primary side and the secondary side of the membrane (12), the plasma (18, 20) being used as conductive element.
摘要:
This invention relates to a rubbery or elastomeric polymer material taking up more than 5% by weight of water and at most 500% by weight of water after immersion in demineralized water at room temperature for a sufficient time to reach saturation, comprising: (a) repeating units from one or more hydrophobic organic monomers, and (b) repeating units from one or more monomers (a) being modified with one or more hydrophilic side groups. The rubbery or elastomeric polymer material may be in the form of a sheet, a foam, a coating adapted for adhesion to a substrate, or a fiber. This invention also relates to processes, polymerizable compositions, and foaming compositions for producing such rubbery or elastomeric polymer materials.
摘要:
The present invention relates to a transducer (11) comprising—a membrane (31) configured to change shape in response to a force, the membrane (31) having a first major surface (16) and a second major surface (17), —a piezoelectric layer (18) formed over the first major surface (16) of the membrane (31), the piezoelectric layer (18) having an active portion, —first and second electrodes (19) in contact with the piezoelectric layer (18), wherein an electric field between the first and second electrodes (19) determines the mechanical movement of the piezoelectric layer (18), —support structures (40) at the second major surface (17) of the membrane (15) on adjacent sides of the active portion of the piezoelectric layer (18), at least part of the support structures (40) forming walls perpendicular, or at least not parallel, to the second major surface (17) of the membrane (31), so as to form a trench (41) of any shape underlying the active portion, so that an ultrasound transducer is obtained with a high output pressure at the support side than at the opposite side. The invention also relates to a method of forming such a transducer, and an array comprising at least one transducer of the like.
摘要:
A cushion member for a user interface device is provided. The cushion member is structured to provide a load distribution functionality responsive to the cushion member being donned by the user, wherein at least a portion of the cushion member has a local stiffness of less than or equal to 100 kPa/mm responsive to a stress increase on the cushion member of 1 kPa-15 kPa.
摘要:
The present invention relates to a method of generating oxygen. The method addresses the objects of reducing the servicing work and improving the purity of the generated oxygen. According to the invention, the method comprises the steps of: providing an oxygen comprising gas at a primary side of a dense voltage drivable membrane (12); applying a voltage between a conductive element at the primary side of the membrane (12) and a conductive element at a secondary side of the membrane (12), the conductive elements being electrically connected to the membrane (12), wherein a plasma (18, 20) is generated at at least one of the primary side and the secondary side of the membrane (12), the plasma (18, 20) being used as conductive element.