Abstract:
Systems, apparatuses and methods may provide for technology that reads a lower page, one or more intermediate pages and a last page from a set of multi-level non-volatile memory (NVM) cells, wherein one or more of a lower read time associated with the lower page or a last read time associated with the last page is substantially similar to an intermediate read time associated with the one or more intermediate pages.
Abstract:
The inhibit voltage is a voltage applied to wordlines adjacent to a program wordline having a memory cell to write during the program operation. The inhibit voltage for a program operation can be ramped up during the program pulse. Instead of applying a constant high inhibit voltage that results in the initial boosted channel potential reducing drastically due to leakage, a system can start the inhibit voltage lower and ramp the inhibit voltage up during the program pulse. The ramping up can be a continuous ramp or in finite discrete steps during the program pulse. Such ramping of inhibit voltage can provide better tradeoff between program disturb and inhibit disturb.
Abstract:
In one embodiment, an apparatus comprises a storage device comprising a NAND flash memory. The storage device is to store a first page of data in a plurality of cells of the NAND flash memory in a first programming pass; and preserve the readability of the first page of data in the plurality of cells during a subsequent programming pass comprising a plurality of program loops, at least one of the plurality of program loops to comprise application of a first voltage to a first group of cells of the plurality of cells and application of a second voltage to a second group of cells of the plurality of cells, wherein the first group comprises cells that were not programmed in the first programming pass and the second group comprises cells that were programmed in the first programming pass.
Abstract:
Methods, apparatus, systems and articles of manufacture to preserve data of a solid state drive during a power loss event are disclosed. An example method includes setting an alternate data cache (PDC1) to a logical AND of a secondary data cache (SDC) and a primary data cache (PDC0). The PDC1 is set to a logical AND of the PDC1 and a first result of a first sense operation. The PDC0 is set to a logical AND of the PDC0 and an inverse value of the PDC1. The PDC1 is set to a logical AND of the SDC and the PDC0. The PDC1 is set to a logical AND of the PDC1 and an inverse value of a second result of a second sense operation. The SDC is set to a logical AND of the SDC and the PDC0. The SDC is set to a logical OR of the SDC or the PDC0. The PDC0 is set to a logical AND of the PDC0 and a third result of a third sensing operation.
Abstract:
Methods, apparatus, systems and articles of manufacture to preserve data of a solid state drive during a power loss event are disclosed. An example method includes sending, upon detection of the power loss event, from a processor of the solid state drive, a command to abort an ongoing write operation of an aborted memory cell. In response to an indication that the ongoing write operation is aborted, the data to be written to the aborted memory cell is recovered. A first portion of the data to be written to the aborted memory cell is written to a first memory cell. A second portion of the data to be written to the aborted memory cell is written to a second memory cell.
Abstract:
Embodiments of the present disclosure include techniques and configurations for multi-pulse programming of a memory device. In one embodiment, a method includes applying multiple pulses to program one or more multi-level cells (MLCs) of a memory device, wherein individual pulses of the multiple pulses correspond with individual levels of the one or more MLCs and subsequent to applying the multiple pulses, verifying the programming of the individual levels of the one or more MLCs. Other embodiments may be described and/or claimed.
Abstract:
In one embodiment, an apparatus comprises a memory comprising a group of memory cells coupled to a wordline; and a controller configured to skip programming of one or more pages of the group of memory cells responsive to a sequential write operation; and program the one or more pages of the group of memory cells responsive to one or more random write commands.
Abstract:
Apparatus, systems, or methods for a memory array having a plurality of word lines. A word line includes at least one word line plate, and the word line plate comprises a first material with a first resistivity. An edge of the word line plate is recessed and filled with a second material having a second resistivity that is lower than the first resistivity. As a result, the total resistance of the word line may be reduced compared to a word line using only the first material with the first resistivity. Other embodiments may also be described and claimed.
Abstract:
A memory device comprising a memory array; and controller circuitry to apply a first pass voltage to a first plurality of unselected wordlines of the memory array during a string current sensing phase; and reduce the first pass voltage applied to the first plurality of unselected wordlines during a multistrobe sensing phase that follows the string current sensing phase.
Abstract:
Reduction of program disturb degradation in a flash memory cell array is facilitated by selectively switching wordline voltage levels in a sequence that reduces the likelihood of trapping electrons in memory cell channels. During a program verify operation for a memory cell in a memory cell string, a flash memory system switches wordline voltage levels from high-to-low for interface wordlines, prior to switching wordline voltages from high-to-low for other wordlines in a memory cell string. Selectively switching wordlines in a sequence in the memory cell string enables electrons to migrate to ground or to a source voltage through upper and lower select gates.