Abstract:
Some demonstrative embodiments include devices, systems and methods of Wireless Local Area Network (WLAN) setting of a User Equipment (UE). For example, a UE may include a Wireless Local Area Network (WLAN) transceiver to communicate with a WLAN; a cellular transceiver to communicate with a cellular network; a user interface to provide a user with a plurality of WLAN setting options and to receive an indication of a selected WLAN setting from the plurality of WLAN setting options; and a connection manager to cause the WLAN transceiver to operate according to the selected WLAN setting.
Abstract:
Some demonstrative embodiments include devices, systems and/or methods of communicating non-cellular access network information via a cellular network. For example, an Evolved Node B (eNB) may include a radio to transmit a control message over a cellular communication medium, the control message including access network information of at least one non-cellular network within a coverage area of the eNB.
Abstract:
Wireless communication traffic can be offloaded from a user equipment (UE) to two wireless points of access. For example, user equipment (UE) is connected to a radio access network (RAN) using a radio access technology (RAT) such as a long term evolution (LTE) network. The UE can determine which network capabilities are available for traffic offloading and adapt to the capabilities presented. In one embodiment, the UE can determine whether the network supports three different configurations and configure traffic offloading to operate within the network conditions: (1) RAN rules without access network detection and selection function (ANDSF), (2) ANDSF in conjunction with RAN rules or (3) enhanced ANDSF with RAN assistance.
Abstract:
Some demonstrative embodiments include devices, systems and/or methods of communicating Wireless Local Area Network (WLAN) offloading information between cellular managers. For example, a first cellular manager of a first cellular network may send to a second cellular manager of a second cellular network one or more WLAN offload parameters corresponding to Radio Access Network (RAN) assisted WLAN interworking information, which is sent to one or more User Equipment (UE) in the first cellular network.
Abstract:
Techniques for 60 GHz long term evolution (LTE)—wireless local area network (WLAN) aggregation (LWA) for keeping a 60 GHz channel alive for fifth generation (5G) and beyond are discussed herein. An apparatus of a 5G/long term evolution (LTE) evolved NodeB (eNB) is connected to a 60 GHz access point (AP) via an Xw interface, and has a baseband circuit with one or more baseband processors. The baseband circuit encodes one or more measurement events, wherein upon receipt by a user equipment (UE) sets a trigger to measure a 60 GHz access point.
Abstract:
A mobile communication device may include a first modem configured to transmit and receive radio signals on a cellular wide area radio access, a second modem configured to transmit and receive radio signals on a short range radio access, and a connection management circuit configured to monitor radio access transfers of one or more packet data network connection to generate a transfer history database, determine from the transfer history database if excessive previous transfers of the one or more packet data network connections occur between the cellular wide area radio access and the short range radio access, identify an available transfer of a target packet data network connection of the one or more packet data network connections between the first modem and the second modem, and selectively block the available transfer between the first modem and the second modem based on if excessive previous transfers of the one or more packet data network connections occur between the first modem and the second modem.
Abstract:
Embodiments of the present disclosure are directed towards devices and methods for identifying preferred access networks based at least in part on access network information including access network assistance information, steering policies, or access commands. In some embodiments, conflicts between access network information and access network discovery and selection function (ANDSF) policies may be rectified in identifying a preferred access network.
Abstract:
A user equipment device (UE) may create efficient Packet Data Convergence Protocol (PDCP) status reports. The UE may receive PDCP packets from multiple radio access technologies (RATs) using the same bearer or same RAT using split bearers. The UE may identify packets that the UE should have received but did not, and may create a status report based on the sequence numbers (SNs) of the packets that the UE failed to receive or based on the SNs of the successful packets. The report may include the SNs of the packets, in addition to a bit-length of the SNs and/or a starting point of the SNs in the status report. Alternatively, the report may include the SN of a first packet that the UE failed to receive and offset values (relative to the SN of the first packet) for the other packets that the UE failed/succeed to receive.
Abstract:
Some demonstrative embodiments include devices, systems and methods of Wireless Local Area Network (WLAN) setting of a User Equipment (UE). For example, a UE may include a Wireless Local Area Network (WLAN) transceiver to communicate with a WLAN; a cellular transceiver to communicate with a cellular network; a user interface to provide a user with a plurality of WLAN setting options and to receive an indication of a selected WLAN setting from the plurality of WLAN setting options; and a connection manager to cause the WLAN transceiver to operate according to the selected WLAN setting.
Abstract:
In a communication device and communication method, channel quality information for first and the second communication protocols is calculated. Further, allocation information can be generated for the first and the second communication protocols based on the corresponding channel quality information. Sequence numbers of corresponding data frames to be transmitted by the communication device can be generated. Further, the data frames and corresponding sequence numbers can be allocated to the first and the second communication protocols based on the allocation information.