Abstract:
A technique relates sorting entities. The entities are introduced into a nanopillar array. The entities include a first population and a second population, and the nanopillar array includes nanopillars arranged to have a gap separating one from another. The nanopillars are ordered to have an array angle relative to a fluid flow direction. The entities are sorted through the nanopillar array by transporting the first population of the entities less than a predetermined size in a first direction and by transporting the second population of the entities at least the predetermined size in a second direction different from the first direction. The nanopillar array is configured to employ the gap with a gap size less than 300 nanometers in order to sort the entities having a sub-100 nanometer size.
Abstract:
A device for passing a biopolymer molecule includes a nanochannel formed between a surface relief structure, a patterned layer forming sidewalls of the nanochannel and a sealing layer formed over the patterned layer to encapsulate the nanochannel. The surface relief structure includes a three-dimensionally rounded surface that reduces a channel dimension of the nanochannel at a portion of nanochannel and gradually increases the dimension along the nanochannel toward an opening position, which is configured to receive a biopolymer.
Abstract:
Techniques relate to forming a sorting device. A mesh is formed on top of a substrate. Metal assisted chemical etching is performed to remove substrate material of the substrate at locations of the mesh. Pillars are formed in the substrate by removal of the substrate material. The mesh is removed to leave the pillars in a nanopillar array. The pillars in the nanopillar array are designed with a spacing to sort particles of different sizes such that the particles at or above a predetermined dimension are sorted in a first direction and the particles below the predetermined dimension are sorted in a second direction.
Abstract:
A technique relates to stretching an extensible molecule. The molecule moves through an array of pillars in a flow direction, where the array has an interface connecting a first pillar region and a second pillar region. Stretching the molecule by traversing the molecule in the flow direction through the interface connecting the first pillar region to the second pillar region, such that a first end and a second end of the molecule straddle a straddle pillar, thereby causing the first end to extend along a first path in the second and the second end to extend along a second path. Traversing the molecule stretches the first end and the second end along two different paths. The molecule is further traversed through the array such that the second end follows the first end along the first path, where the stretching causes the molecule to be in an uncoiled state.
Abstract:
Techniques for increasing the capture zone in nano and microchannel-based polymer testing structures using concentric arrangements of nanostructures, such as nanopillars are provided. In one aspect, a testing structure for testing polymers is provided that includes a first fluid reservoir and a second fluid reservoir formed in an electrically insulating substrate; at least one channel formed in the insulating substrate that interconnects the first fluid reservoir and the second fluid reservoir; and an arrangement of nanostructures within either the first fluid reservoir or the second fluid reservoir wherein the nanostructures are arranged so as to form multiple concentric circles inside either the first fluid reservoir or the second fluid reservoir with each of the concentric circles being centered at an entry point of the channel. A method of analyzing a polymer using the testing structure is also provided.
Abstract:
A technique includes forming a gradient channel with width and depth gradients. A mask is disposed on top of a substrate. The mask is patterned with at least one elongated channel pattern having different elongated channel pattern widths. A channel is etched in the substrate in a single etching step, the channel having a width gradient and a corresponding depth gradient both simultaneously etched in the single etching step according to the different elongated channel pattern widths in the mask.
Abstract:
A device for passing a biopolymer molecule includes a nanochannel formed between a surface relief structure, a patterned layer forming sidewalls of the nanochannel and a sealing layer formed over the patterned layer to encapsulate the nanochannel. The surface relief structure includes a three-dimensionally rounded surface that reduces a channel dimension of the nanochannel at a portion of nanochannel and gradually increases the dimension along the nanochannel toward an opening position, which is configured to receive a biopolymer.
Abstract:
A device for passing a biopolymer molecule includes a nanochannel formed between a surface relief structure, a patterned layer forming sidewalls of the nanochannel and a sealing layer formed over the patterned layer to encapsulate the nanochannel. The surface relief structure includes a three-dimensionally rounded surface that reduces a channel dimension of the nanochannel at a portion of nanochannel and gradually increases the dimension along the nanochannel toward an opening position, which is configured to receive a biopolymer.
Abstract:
A technique relates sorting entities. The entities are introduced into a nanopillar array. The entities include a first population and a second population, and the nanopillar array includes nanopillars arranged to have a gap separating one from another. The nanopillars are ordered to have an array angle relative to a fluid flow direction. The entities are sorted through the nanopillar array by transporting the first population of the entities less than a predetermined size in a first direction and by transporting the second population of the entities at least the predetermined size in a second direction different from the first direction. The nanopillar array is configured to employ the gap with a gap size less than 300 nanometers in order to sort the entities having a sub-100 nanometer size.
Abstract:
A technique includes forming a gradient channel with width and depth gradients. A mask is disposed on top of a substrate. The mask is patterned with at least one elongated channel pattern having different elongated channel pattern widths. A channel is etched in the substrate in a single etching step, the channel having a width gradient and a corresponding depth gradient both simultaneously etched in the single etching step according to the different elongated channel pattern widths in the mask.